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The elicitation of criteria weights in spatial and logistical Multi-Criteria Decision 
Making (MCDM) typically relies on panels of human domain experts. However, in 
specialized high-stakes contexts such as pharmaceutical inventory management, 
expert availability is scarce, expensive, and subject to cognitive biases. This study 
proposes a novel methodological framework that offers a structured alternative 
to traditional human panels by employing a Multi-Agent System (MAS) of Large 
Language Models (LLMs) to generate subjective weights. We introduce a rigorous 
Z-number-based fuzzy AHP approach in which LLMs, acting as autonomous virtual 
experts, defined as Agents LLM1, LLM2, and LLM3, perform iterative pairwise 
comparisons. The methodology strictly separates internal logical consistency, 
verified via Consistency Ratios (CR) on crisp matrices, from confidence modeling, 
which is handled via Z-numbers. The LLM-derived weights were aggregated over 
k=3 iterations to mitigate stochasticity and hybridized with objective CRITIC 
weights to rank nine Vendor Managed Inventory (VMI) policies. Results indicate 
strong ranking invariance across all agents and hybridization ratios (ρ=1.0). 
Beyond numerical stability, the framework demonstrates "behavioral 
isomorphism" with human ethical standards, explicitly enforcing a "safety-first" 
constraint. This suggests that LLM-driven frameworks exhibit "dominance 
stability," positioning them as robust cognitive simulators that align optimization 
metrics with domain-specific priorities such as patient safety. 
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1. Introduction 
 
The pharmaceutical supply chain presents a unique optimization challenge where the "Golden Triangle" of 
logistics, cost, speed, and reliability, is constrained by the ethical imperative of patient safety [1]. In Vendor 
Managed Inventory (VMI) systems, decision-makers must select policies that minimize costs without 
compromising service levels, as stockouts can lead to life-threatening consequences [2]. Multi-Criteria 
Decision Making (MCDM) methods are pivotal in navigating these trade-offs, yet their validity relies heavily on 
the accurate elicitation of criteria weights [3]. 

Conventionally, weight elicitation requires convening panels of high-level human experts. This process faces 
significant bottlenecks: (1) Scarcity: Experts are costly and difficult to schedule; (2) Inconsistency: Human 
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judgment is prone to fatigue, requiring iterative re-evaluation; and (3) Latency: Logistical dynamics often 
evolve faster than expert panels can be assembled[4]. 

The emergence of Large Language Models (LLMs) offers a paradigm shift. Recent surveys on Multi-Agent 
Systems (MAS) indicate that LLMs can function as reasoning agents capable of complex decision support [5]. 
However, treating LLMs as "black box" decision-makers entails risks regarding logical inconsistency. To bridge 
this gap, this study proposes a "Virtual Expert" framework. We employ three distinct LLM architectures to 
generate pairwise comparison matrices, using Z-numbers [6]  to mathematically model the "confidence" of 
the AI agents, distinct from their preference intensity. 

Current MCDM literature in pharmaceutical contexts typically adopts a binary approach[7]: utilizing either 
purely data-driven methods (e.g., Entropy, CRITIC), which fail to capture normative values like "ethical risk," 
or relying on static human panels (Delphi method), which suffer from limited scalability[8]. A critical gap exists 
in developing "Hybrid Cognitive Systems" capable of simulating expert intuition at scale without the logistical 
overhead of human coordination. This study addresses this gap by formalizing a protocol in which LLMs are 
not merely treated as search engines but as "In-Silico" domain experts. By integrating Z-numbers, we 
specifically tackle the epistemic uncertainty inherent in Generative AI, providing a mathematical safeguard 
against the phenomenon of "hallucination" in decision support[9]. 

It is important to emphasize that the proposed framework does not aim to fully replace human experts. 
Rather, it provides a structured, scalable approximation mechanism for expert judgment in contexts where 
expert access is limited, delayed, or infeasible due to resource constraints. 

2. Theoretical Positioning 

2.1. The Expert Scarcity Problem and Limitations of Traditional Elicitation 

In pharmaceutical logistics, convening a panel of senior managers is often unfeasible due to time constraints 
[10]. Traditional methods like the Delphi technique or Focus Groups, while rigorous, are inherently slow and 
prone to "groupthink," where dominant voices suppress dissenting opinions [11]. Furthermore, human 
experts are susceptible to "availability bias," often overweighing recent disruptions (e.g., a recent pandemic 
event) over structural priorities [12]. This necessitates a mechanism for rapid, consistent, and scientifically 
grounded weight elicitation  that preserves the semantic richness of human judgment while operating at the 
speed of computational algorithms [13]. 

2.2. LLMs as Cognitive Simulators in Multi-Agent Systems 

Recent literature distinguishes between using LLMs as knowledge retrieval tools and as reasoning agents[14].  
Lie´ vin et al. [15] argue that LLMs, when properly prompted, can simulate expert reasoning by accessing latent 
knowledge structures. This capability moves beyond simple text generation; it implies that LLMs can perform 
Chain-of-Thought (CoT) reasoning to mimic the heuristic trade-offs a supply chain manager would make [16]. 
By configuring these models as a Multi-Agent System (MAS), we effectively create a "Digital Boardroom." 
Unlike a single model, which may exhibit specific training biases, a heterogeneous MAS (DeepSeek, GPT, 
Gemini) approximates the diversity of a human panel, thereby reducing the variance of the aggregated 
decision and enforcing a "wisdom of the artificial crowd [17], [18]. 

2.3. Z-Numbers: Modeling AI Reliability 

Standard Fuzzy AHP addresses linguistic vagueness (e.g., the ambiguity of the term "Strongly Preferred") but 
fails to capture judgment reliability. Introduced by Zadeh (2011), Z-numbers (𝑍 = 𝐴, 𝐵) introduce a 
component 𝐵representing confidence [6]. In the context of AI-driven MCDM, this is methodologically critical. 
Since LLMs are probabilistic engines that may output plausible but incorrect statements (hallucinations)[19], 
the component 𝐵 serves as a damping factor [20]. It allows the model to mathematically penalize judgments 
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where the AI agent expresses high preference but low confidence, a nuance that standard Fuzzy sets or Crisp 
AHP cannot represent [21]. 

2.4. Positioning Statement 

Unlike prior studies that either rely exclusively on costly human experts or purely objective data-driven 
weighting[22], [23], [24], [25]. This study positions itself at the intersection of cognitive AI  [26], reliability-
aware fuzzy modeling, and pharmaceutical decision ethics [27]. We argue that LLMs can serve as "proxies" for 
human experts [28], if—and only if—their reasoning is constrained by rigorous consistency checks and their 
uncertainty is modeled via Z-numbers. 

3. Methodology 

The proposed framework (see Figure 1) follows a sequential logic designed to extract, validate, and aggregate 
expert knowledge from non-human agents. 

 

Fig.1.Workflow of the proposed LLM-assisted Z-number fuzzy AHP–CRITIC–TOPSIS framework. 

3.1. Problem Context and Criteria 
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The decision problem involves ranking nine pharmaceutical inventory policies (e.g., SMT-SSP, OUT, GRIH-P) 
based on six quantitative criteria: 

1. C1: Avg Total Cost (Min) 

2. C2: Service Level % (Max) 

3. C3: Avg Stockout Qty (Min) 

4. C4: Financial Risk (Min) 

5. C5: Delivery Efficiency (Max) 

6. C6: Reliability Index (RI) (Max) 

3.2. Multi-Agent LLM Elicitation Protocol 

To simulate a diverse panel, three heterogeneous LLM architectures were employed (hereafter denoted 
as LLM1, LLM2, and LLM3). For transparency, these correspond to DeepSeek-R1, ChatGPT-5.2, and Google 
Gemini pro-3, respectively. This selection ensures diversity in training data and reasoning paradigms. 

3.2.1 Prompt Design and Iterative Protocol 

Leveraging the task-agnostic capabilities of LLMs demonstrated by [29], we designed a "Virtual Expert" 
protocol that operates without fine-tuning. As illustrated in Figure 2, the elicitation process employs a Zero-
shot CoT architecture. By explicitly prompting the agent to "think step by step" before outputting a numerical 
weight, the model is forced to traverse a latent reasoning path—weighing ethical constraints (e.g., patient 
safety) against financial metrics—before collapsing its judgment into a structured JSON format. 

 

Fig. 2. The proposed Zero-shot CoT prompting architecture used to elicit pairwise judgments from LLM agents 

A standardized "Persona Prompt" (Appendix A) was designed to act as a Senior Supply Chain Manager. To 
mitigate stochasticity, each agent was queried 𝑘 = 3 times. The geometric mean aggregated the iterations 
into a single representative matrix for each agent. The Geometric Mean was specifically chosen over the 
Arithmetic Mean to preserve the reciprocal property of the AHP matrices (𝑎𝑗𝑖 = 1/𝑎𝑖𝑗) and to minimize the 

impact of extreme outliers in the agents' probability distributions. 
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3.3. Logical Consistency Verification 

Before fuzzy processing, we strictly validated logical coherence. The Consistency Ratio (CR) is calculated 
as 𝐶𝑅 = 𝐶𝐼/𝑅𝐼𝑛 [30]. 

Constraint: If   𝐶𝑅 > 0.1, the LLM agent is deemed logically inconsistent for that iteration, and the result is 
discarded.  This step acts as a "Quality Gate," ensuring that only mathematically transitive judgments enter the 
aggregation phase. 

3.4. Z-Number Modeling and Aggregation 

Judgments are modeled as 𝑍 = (𝐴̃, 𝑅̃).  The Z-numbers are converted to standard weighted fuzzy numbers 

(𝑍̃′) using the square root of the defuzzified reliability, 𝜇(𝑅), as a scaling factor as Equation (1): 

𝑍̃𝑖𝑗
′ = (𝑙𝑖𝑗 ⋅ √𝜇(𝑅𝑖𝑗), 𝑚𝑖𝑗 ⋅ √𝜇(𝑅𝑖𝑗), 𝑢𝑖𝑗 ⋅ √𝜇(𝑅𝑖𝑗)) (1) 

Weights are aggregated using the Fuzzy Geometric Mean (FGM) and defuzzified via the Center of Area (COA) 
method to produce subjective weights (𝑊𝑠𝑢𝑏). 

3.5. Hybrid Integration and Ranking     

To balance the subjective "Expert" view with the data's intrinsic structure, objective weights (𝑊𝑜𝑏𝑗) were 

calculated using CRITIC (Criteria Importance Through Intercriteria Correlation). CRITIC was selected because it 
accounts for both contrast intensity and conflict between criteria. Final weights are derived as 𝑊𝑓𝑖𝑛𝑎𝑙 =

𝛼𝑊𝑜𝑏𝑗 + (1 − 𝛼)𝑊𝑠𝑢𝑏. Policies were ranked using TOPSIS. 

Algorithm 1: Proposed Hybrid Virtual Expert Protocol 

1. Initialize Agents 𝐴 = {𝐿𝐿𝑀1, 𝐿𝐿𝑀2, 𝐿𝐿𝑀3}. 

2. For each Agent 𝑎 ∈ 𝐴: 
              a. Inject Persona Prompt (Pharma Supply Chain Manager). 
              b. Generate Pairwise Comparison Matrix 𝑀𝑎,𝑘 for 𝑘 = 1…3. 

              c. Check Consistency (𝐶𝑅 < 0.1). If Fail → Regenerate. 
              d. Aggregate Iterations via Geometric Mean → 𝑀𝑓𝑖𝑛𝑎𝑙,𝑎. 

3. Fuzzify crisp judgments into Z-Numbers 𝑍 = (𝐴̃, 𝑅̃). 

4. Convert Z to Fuzzy Numbers 𝑍′ based on reliability 𝜇(𝑅). 

5. Compute Subjective Weights 𝑊𝑠𝑢𝑏 via FGM & COA. 

6. Compute Objective Weights 𝑊𝑜𝑏𝑗via CRITIC method. 

7. Fuse Weights 𝑊𝑓𝑖𝑛𝑎𝑙 = 𝛼𝑊𝑜𝑏𝑗 + (1 − 𝛼)𝑊𝑠𝑢𝑏. 

8. Rank Policies via TOPSIS. 

4. Results 

4.1. Internal Consistency of Virtual Experts 

The logical coherence of the Virtual Experts was robust. Table 1 presents the Consistency Ratios (CR) for the 
aggregated matrices  of each agent. 
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Table 1: Internal Consistency Metrics of Virtual Agents 

Agent 
 

  
Consistency Index (CI) Consistency Ratio (CR) 

LLM1 6.19 0.038 0.031 

LLM2 6.38 0.076 0.061 

LLM3 6.136 0.027 0.022 

All agents performed consistently within acceptable thresholds (𝐶𝑅 < 0.1). Notably, LLM3 exhibited the 
highest internal logic (CR=0.022). This superior performance of LLM3 (Gemini) suggests that its underlying 
training architecture may prioritize formal logic or tabular reasoning more effectively than the more 
conversational models. Crucially, the variance in CR across agents (0.022 to 0.061) mimics the natural 
heterogeneity of human panels, where some experts are more rigorous than others. This confirms that the 
MAS is not generating "robotic" uniformity, but rather a spectrum of valid expert perspectives. 

4.2. Criterion Weight Analysis and Cognitive Bias Correction 

A critical finding is the divergence between data-driven importance (CRITIC) and domain-expert importance 
(𝑊𝑠𝑢𝑏). 

Table 2: Comparison of Weight Distribution 

Criteria Objective (𝑾𝒐𝒃𝒋 ) LLM Z-Number (𝑾𝒔𝒖𝒃) Hybrid (𝑾𝒇𝒊𝒏𝒂𝒍) 

 Avg Total Cost                      0.140455 0.14255 0.141502 

Service Level (Fill Rate) 0.181776 0.379131 0.280454 

Avg Stockout Qty 0.182238 0.201527 0.191883 

Financial Risk (Std Dev) 0.130707 0.062208 0.096457 

Delivery Intensity (units/km) 0.185512 0.048295 0.116903 

RI 0.179313 0.166289 0.172801 

As shown in Figure 3, the Virtual Experts assigned a significantly higher weight to Service Level (0.379) than 
the CRITIC method (0.182). This divergence is analytically profound. The CRITIC method, being purely data-
driven, undervalued Service Level because the underlying dataset likely showed low variance in this metric 
(i.e., most policies performed similarly). However, the LLM agents, simulating human strategic intent, 
"corrected" this statistical artifact. They recognized that in the pharmaceutical domain, even if Service Level 
variance is low, its semantic importance is paramount due to ethical considerations related to patient safety. 
This proves that the LLMs successfully injected "Contextual Intelligence" that objective mathematical methods 
lack. 
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.  
Fig. 3: Comparative weight distribution between Objective (CRITIC) and Subjective (LLM) Hybrid methods. 

4.3. Comparative Weight Analysis  

Figure 4 provides a morphological comparison of the decision profiles generated by the three agents. The 
geometric shapes of the three agents are nearly isomorphic. All three agents produced a distinct "spike" 
towards Service Level (Max Weight) while simultaneously compressing the weight of Delivery Efficiency (Min 
Weight). 

This isomorphism across disparate LLM architectures (LLM1, LLM2, LLM3) indicates that the preference for 
"Safety over Efficiency" is a robust feature of the pharmaceutical knowledge base ingrained in these models. 
The minor nuances—such as LLM1’s slight preference for Stockout minimization—can be attributed to the 
specific loss functions or fine-tuning datasets of the respective models (e.g., LLM1's focus on technical 
reasoning). However, the overarching "Strategic Shape" of the decision remains identical. 

 

Fig. 4: Radar comparison of subjective weight profiles produced by LLM1–LLM3 
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4.4. Inter-Agent Consensus  

Beyond internal consistency, the validity of the MAS framework relies on consensus among independent 
agents. Figure 5 illustrates the Spearman Rank Correlation between the initial weight vectors of LLM1, LLM2, 
and LLM3. The correlations range from 0.83 to 0.89, indicating a strong consensus. Despite distinct underlying 
architectures (LLM1 vs. LLM2 vs. LLM3), the agents did not generate random weights. Instead, they converged 
on a shared understanding of pharmaceutical trade-offs. This high correlation effectively refutes the 
"hallucination hypothesis"; if agents were hallucinating, their outputs would be uncorrelated noise (ρ ≈ 0). The 
observed convergence confirms they are accessing a stable, domain-specific knowledge base embedded 
within their training corpora. 

 

Fig. 5: Spearman rank correlation heatmap indicating inter-agent consensus. 

4.5. Ranking Invariance and Robustness 

The ultimate test of the framework is the stability of the final decision. Table 3 details the ranking of policies 
derived from each individual LLM agent before hybridization. 

Table 3: Ranking Invariance Across Individual Virtual Agents 

POLICY 
Rank 

(LLM1) 
Rank 

(LLM2) 
 Rank 

(LLM3) 
Hybrid 
Rank 

SMT-SSP 1 1 1 1 

OUT 2 2 2 2 

GRIH-P 3 3 3 3 

PORP Classic 4 4 4 4 

VMI Urgency 5 5 5 5 

dynamic (s, S) inertial 6 6 6 6 

dynamic (s, S) proactive 7 7 7 7 

static (s, S) 8 8 8 8 

Dynamic (s, S) reactive 8 8 8 8 
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As shown in Table 3, the ranking order is identical across all three independent agents. Consequently: 

1. Spearman’s Rank Correlation (𝜌): 1.00 (Perfect Correlation between agents). 
2. Kendall’s Tau (𝜏): 1.00 (Zero discordant pairs). 

This absolute invariance suggests a phenomenon of "Dominance Stability." The policy SMT-SSP is not merely 
the "best" on average; it represents a Pareto-optimal solution that satisfies the distinct value systems of all 
three virtual agents. Whether the decision focuses on Risk (LLM3) or Stockouts (LLM1), SMT-SSP remains the 
superior choice. This finding is crucial for practical implementation, as it implies that the decision is resilient 
to the choice of the specific AI model, granting the system a high degree of "Model Agnosticism. 

4.5. Sensitivity Analysis and Robustness Check 

To assess the stability of the proposed decision model, we performed a sensitivity analysis by varying the 
hybridization parameter 𝛼 ∈ {0.3,0.5,0.7} (which controls the trade-off between Objective CRITIC weights 
and Subjective LLM weights). As illustrated in Figure 6, the rank order remained invariant across all scenarios. 
The policy SMT-SSP maintained its position as the optimal solution (Rank 1). 

 

Fig.6: Rank stability under hybridization sensitivity analysis (𝛼 ∈ {0.3,0.5,0.7}). 

This "Zero Rank Reversal" phenomenon indicates that SMT-SSP's superiority is structural. It is not an artifact 
of a specific weighting scheme but is the robust solution regardless of whether the decision-maker leans 
towards data-driven or expert-driven preferences. 

5. Discussion 

5.1. Validating LLMs as "Virtual Experts." 

The primary contribution of this study is not merely the application of TOPSIS, but the empirical validation of 
LLMs as reliable substitutes for experts in MCDM. The results provide three layers of evidence for this validity: 
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1. Logical Rigor: The low Consistency Ratios (𝐶𝑅 ≤ 0.06) prove that LLMs can adhere to the 
mathematical axioms of AHP better than many human panels, which often struggle with matrix 
transitivity. 

2. Consensus Validity: The high inter-agent correlation (>0.83 in Figure 5) confirms that independent 
models converge on the same "truth." If LLMs were hallucinating, their weights would likely manifest 
as uncorrelated noise. The observed convergence suggests they are successfully extracting a stable 
"Wisdom of the Corpus" representing established pharmaceutical best practices. 

3. Outcome Determinism: The perfect rank match (𝜌 = 1.0) across LLM1, LLM2, and LLM3 (Table 3) 
indicates that the "Virtual Expert" system produces deterministic, reproducible recommendations, 
addressing the primary concern regarding AI reliability in operations research. 

5.2. Contextual Intelligence vs. Data Variance 

The study highlights a fundamental limitation of objective weighting methods (CRITIC/Entropy) in safety-
critical domains: they confuse "statistical variance" with "strategic importance." The LLM agents bridged this 
gap by enforcing a normative hierarchy where Patient Safety (Service Level) dominates Cost, regardless of the 
data distribution. This confirms that the proposed framework acts as a "Semantic Filter," aligning 
mathematical optimization with human ethical standards. 

5.3. The Phenomenon of "Dominance Stability." 

The absolute ranking invariance (Kendall’s 𝜏 = 1.0) observed in Table 3 implies a phenomenon we 
term "Dominance Stability." 

Even though LLM1 prioritized Stockout slightly more and LLM3 prioritized Risk, the structural superiority of 
the SMT-SSP policy absorbed these variations. 

For pharmaceutical stakeholders, this is crucial. It signifies that the system is "Model Agnostic." The final 
recommendation is resilient to the specific choice of AI architecture or minor fluctuations in prompt 
interpretation. This addresses a primary barrier to AI adoption in supply chains, the fear of variability. Our 
results show that diverse AI agents, acting as a "Digital Committee," can reliably identify the Pareto-optimal 
solution without human intervention. 

5.4. Applied Validation Layer: Behavioral and Operational Integrity 

Beyond the mathematical prerequisites of internal consistency (𝐶𝑅 < 0.1) and inter-agent consensus (𝜌 >
0.83), the validity of the LLM-derived weights was further examined through a tripartite "Applied Validation 
Layer." This analysis evaluates whether the computational outputs translate into operationally rational 
decisions within the constraints of pharmaceutical logistics. 

5.4.1. Decision Consequence and Criteria Sensitivity 

The first validation step, the Decision Consequence Test, assessed the structural robustness of the assigned 
priorities. Operationally, if the substantial weight attributed to Service Level (𝐶2 ≈ 0.38) were a stochastic 
artifact or a model "hallucination," even minor perturbations in the hybridization parameter (𝛼) would likely 
trigger rank reversals. However, the observed stability in the decision topology, as evidenced by the zero-rank 
reversal discussed in Section 4.5, indicates that the LLM-generated weights provided a decisive utility margin. 
Analytically, the dominant weights on Service Level and Reliability Index (C6) functioned as system 
"stabilizers," creating a clear separation between the optimal policy (SMT-SSP) and suboptimal alternatives. 
This confirms that the Virtual Experts correctly identified these criteria as non-negotiable Critical Success 
Factors rather than merely adjustable variables. 

5.4.2. Behavioral Plausibility and Ethical Alignment 
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The second validation, the Behavioral Plausibility Test, evaluated the alignment between the algorithmic 
output and the normative behavior of human experts in high-stakes environments. The resulting hierarchy 
consistently favored the SMT-SSP policy—characterized by high safety stock and responsiveness—thereby 
mirroring the "loss aversion" typical of pharmaceutical supply chain managers. By assigning a maximum weight 
to Service Level, the Virtual Experts effectively imposed a dominant constraint against cost-centric policies 
that compromise patient safety. Conversely, the compression of Delivery Efficiency (C5) to a minimal weight 
(≈ 0.048) reflects a nuanced domain understanding: in life-saving supply chains, transport efficiency is 
secondary to stock availability. This specific weight distribution confirms a behavioral isomorphism between 
the AI agents' reasoning and the ethical imperatives of the pharmaceutical domain. 

5.4.3. Scale Invariance and Relative Priority 

Finally, the Scale Invariance Test examined the weights as relative preference structures rather than absolute 
scalars. The persistence of the SMT-SSP policy’s dominance, despite the blending of purely objective CRITIC 
weights with subjective LLM weights, demonstrates that the ratio of importance established by the agents, 

specifically the condition 
𝑊𝑒𝑖𝑔ℎ𝑡𝑆𝑒𝑟𝑣𝑖𝑐𝑒

𝑊𝑒𝑖𝑔ℎ𝑡𝐶𝑜𝑠𝑡
> 1—was sufficiently robust to withstand mathematical scaling. This 

implies that the Z-number approach successfully captured the ordinal hierarchy of domain values—placing 
Safety and Reliability above Cost and Efficiency—rendering the framework resilient to parameter sensitivity 
and confirming the weights act as operational priorities rather than rigid numerical constraints. 

5.5. Managerial and Methodological Implications 

From a managerial perspective, this framework offers a "Rapid Prototyping" tool for supply chain policies. 
Managers can deploy this system to obtain a preliminary expert-grade ranking in seconds, rather than weeks, 
effectively democratizing access to high-level decision support. Methodologically, this study pioneers the 
concept of "In-Silico MCDM," establishing a protocol where AI agents replace human subjects in the early 
stages of decision modeling. This opens new avenues for research into "Automated Governance," in which 
multi-agent systems monitor and dynamically adjust supply chain parameters in response to evolving strategic 
priorities. 

5.6. Limitations 

While robust, validation relies on internal consistency and inter-agent consensus (Consistency & Convergence) 
rather than a ground-truth human benchmark, which was unavailable. Additionally, the identical rankings 
suggest the decision problem itself may have a clearly dominant solution; in more ambiguous trade-off 
scenarios, greater divergence between agents might be observed. 

6. Conclusions 

This study addresses the challenge of expert scarcity in pharmaceutical logistics by introducing an LLM-
Assisted Virtual Expert Weight Elicitation Framework. By orchestrating a multi-agent system of neutral agents 
(LLM1–LLM3) via a 3-iteration prompt protocol and Z-number confidence modeling, we derived logically 
consistent and domain-relevant criteria weights. Key findings confirm that LLMs are not merely stochastic text 
generators but can satisfy rigorous expert criteria: Logical Consistency (𝐶𝑅 < 0.1), High Consensus (𝜌 > 0.83), 
and Perfect Rank Stability (𝜏 = 1.0). This validates the framework as a methodologically robust tool for 
technical decision support.   Specifically, the integration of Z-numbers successfully dampened epistemic 
uncertainty, allowing the system to distinguish between "strong preferences" and "confident preferences." 
Future research should extend this framework to "Human-in-the-Loop" (HITL) configurations, in which human 
experts intervene only when the Multi-Agent System detects high inter-agent conflict (low consensus). 
Additionally, fine-tuning these LLMs on proprietary supply chain logs could further enhance the specificity of 
the virtual experts, moving from general domain knowledge to organizational-specific decision alignment. 
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