
Intelligent Systems Research and Applications Journal Volume 2, 2026, 40-53

Intelligent Systems Research andApplications Journal
Journal homepage: www.israj.orgeISSN: xxxx-xxxx

α-Domination in Fuzzy Graphs with Applications to FakeNews Control
Akul Rana 1, *

1 Department of Mathematics, Narajole Raj College, Narajole, West Bengal, India
ARTICLE INFO ABSTRACT

Article history:Received 29 November 2025Received in revised form 1 January 2026Accepted 9 DJanuary 2026Available online 12 January 2026

The uncontrolled spread of misinformation across online social networks posesserious societal risks, including political manipulation, public health misinforma-tion and erosion of public trust. Due to uncertainty in user interactions and vary-ing influence levels, classical crisp graph models are often inadequate for realis-tic modeling. In this paper, we introduce an α-domination framework in fuzzygraphs to model and control fake news propagation. We formally define fuzzycoverage via direct and two-step influence with decay and establish theoreticalproperties of the α-domination number, including upper bounds, monotonicityand results for complete fuzzy graphs. we demonstrate how strategically selected
α-dominating sets can act as fact-checking nodes to effectively reduce misinfor-mation spread. Our framework provides a mathematically rigorous and flexibletool for misinformation containment under uncertainty, bridging fuzzy graph the-ory and social network analysis.Keywords:Fuzzy Graph Theory; Domination;Social Networks; Information Con-tainment.

1. Introduction
The exponential growth of online social networking platforms has fundamentally transformed theway information is produced, shared and consumed. While these platforms facilitate global communi-cation, they enable the rapid spread ofmisinformation and fake news, leading to public panic, politicalmanipulation and erosion of trust. Classical graphmodels represent users as vertices and relationshipsas edges with crisp (binary) values. However, real-world social interactions are inherently uncertainand graded: trust levels vary among users, interactions may be intermittent and influence strengthsdiffer from one connection to another. These limitationsmotivate the use of fuzzy graphs, where bothvertices and edges are assignedmembership values that represent the degree of presence or strength.The foundation of fuzzy graphs goes back to Azriel Rosenfeld, who in 1975 extended classical graph-theoretic concepts to the fuzzy-graph setting based on fuzzy relations. The first definition of fuzzy

*Corresponding author. Akul Rana
E-mail address: arnrc79@gmail.com

https://doi.org/10.31181/israjj21102023p
40

https://www.israj.org
https://orcid.org/0000-0001-6668-8002


Intelligent Systems Research and Applications JournalVolume 2, (2026) 40-53
graph given by Kauffman [5] in 1973, was based on fuzzy relations presented by L. Zadeh [16]. Buildingon Kauffman’s idea, Rosenfeld (1975)[11] introduced the concept of fuzzy graphs by providing a com-prehensive definition and establishing several foundational results as fuzzy analogs of classical graphtheory. Domination theory in graphs has been widely used in network control, monitoring and opti-mization problems. A book on the subject of domination of graphs [4] lists over 1200 papers relatedto domination of graphs and several thousand articles on the topic have appeared since the publica-tion of the book. Nevertheless, most existing domination frameworks are based on crisp graphs andfail to accommodate uncertainty in relationships. The study of domination in fuzzy graphs began (ina systematic way) with A. Somasundaram and S. Somasundaram, who in 1998 introduced definitionsof dominating set, total dominating set, minimum dominating set and domination number for fuzzygraphs[13]. A recent survey on the domination of fuzzy graphs is available in [10].Although fuzzy domination has been studied, the concept of α-domination incorporating multi-step influence in fuzzy networks remains underexplored, especially in the context of misinformationcontainment. Research onmisinformation containment oftenuses traditional graph-theoreticmodels,such as the Susceptible-Infected (SI) epidemic model, or heuristic algorithms that balance the prop-agation of positive information and the containment of negative information. Still, these generallydo not explicitly employ the mathematical framework of fuzzy domination. This represents a signifi-cant gap, as social influence is rarely binary: trust between users can vary in degree, susceptibility tofalse information can be topic dependent and influence may decay with distance. By addressing thisgap, the present work contributes a novel framework that combines fuzzy domination theory withmisinformation spread modeling that captures the uncertainty in social influence while optimizing in-tervention placement. Unlike existing domination models in fuzzy graphs, the proposed frameworkexplicitly incorporatesmulti-step influencewith decay andprovides a coverage-based formulation thataligns naturally with information propagation processes in social networks. The main contributions ofthis paper are:

1. A novel definition of α-domination in fuzzy graphs incorporating direct and two-step influencewith decay.
2. Theoretical analysis including bounds, monotonicity and exact results for special fuzzy graphclasses.
3. Algorithmic computation of α-dominating sets.
4. Application to fake news control in social networks.

2. Preliminaries

Definition 1 (Fuzzy Graph) A fuzzy graph is an ordered quadruple

G = (V,E, µ, ω),

where V is a non-empty finite set of vertices, E ⊆ V × V , µ : V → [0, 1] is the vertex membership
function and ω : V × V → [0, 1] is the edge membership function.

We model a social network as a fuzzy graph where:
• Nodes are users with activity levels µ(v).
• Edges are weighted by influence strengths ω(u, v).
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• Fake news spreads along edges with probability proportional to ω.
• An α-dominating set S is selected as monitors to inject fact-checking.
In misinformation contexts, influence is not binary. A user with higher credibility and strongerconnections is more likely to affect the opinions of others. Unless stated otherwise, the fuzzy graph isassumed to be directed, with ω(u, v) representing the influence of user u on user v.

2.1 α-Domination in Fuzzy Graphs

Definition 2 (Coverage Function) LetG = (V,E, µ, ω) be a fuzzy graph and letS ⊆ V . For any vertex
v ∈ V , the coverage of v by S is defined as

covS(v) = max

{
µ(v).1{v∈S},max

u∈S

(
µ(v). ω(u, v)

)
, λ. max

u∈S, w∈N(v)

(
µ(v). ω(u,w). ω(w, v)

)}
,

whereN(v) = {x ∈ V : ω(x, v) > 0} and 0 < λ ≤ 1 is a decay factor.

Note that coverage is computed for each vertex v, but with respect to a set S. The first term is thedirect membership, the second term is the direct neighbor influence and the third term is the two-step influence. Therefore, it It aggregates self-membership, direct influence from vertices in S andtwo-step influence from vertices in S.
Remark 1 The intermediate vertexw in the two-step influence term is restricted to the fuzzy neighbor-
hood of v to ensure that only valid length-two influence paths are considered.

Lemma 1 For a fixed vertex v ∈ V , the coverage function covS(v) is monotone non-decreasing with
respect to set inclusion. That is, if S ⊆ T ⊆ V , then

covS(v) ≤ covT (v).

Proof: Fix a vertex v ∈ V and let S ⊆ T ⊆ V . By definition,
covS(v) = max

{
µ(v)1{v∈S},max

u∈S

(
µ(v)ω(u, v)

)
, λ max

u∈S, w∈N(v)

(
µ(v)ω(u,w)ω(w, v)

)}
.

Since S ⊆ T , the following hold:
• 1{v∈S} ≤ 1{v∈T},
• maxu∈S µ(v)ω(u, v) ≤ maxu∈T µ(v)ω(u, v),
• maxu∈S, w∈N(v) µ(v)ω(u,w)ω(w, v) ≤ maxu∈T, w∈N(v) µ(v)ω(u,w)ω(w, v).
Multiplication by the constant decay factor λ > 0 preserves the inequality. Therefore, each of thethree terms defining covS(v) is less than or equal to the corresponding term defining covT (v).Taking the maximum of the three terms in each case yields

covS(v) ≤ covT (v).

Hence, the coverage function is monotone non-decreasing with respect to set inclusion.
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Definition 3 (α-Dominating Set) Let α ∈ (0, 1]. A set S ⊆ V is an α-dominating set if

covS(v) ≥ α.µ(v) for all v ∈ V.

where α ∈ (0, 1] is a fixed threshold.

Definition 4 (α-Domination Number) The α-domination number ofG, denoted by γα(G), is the min-
imum cardinality of an α-dominating set.

Remark 2 The coverage function covS(v) is defined for each vertex v ∈ V with respect to a setS ⊆ V .
There is no single numerical coverage associated with a set; rather, domination is verified by ensuring
that every vertex individually satisfies the α-coverage condition.

3. Greedy Algorithm
A greedy algorithm is proposed to compute an α-dominating set by iteratively selecting verticesthat maximize marginal coverage. The algorithm terminates in at most |V | iterations since coveragevalues are monotone and bounded.

3.1 Greedy Algorithm for α-Dominating Set

Algorithm
Input: Fuzzy graphG = (V,E, µ, ω), threshold α ∈ (0, 1], decay factor λ ∈ (0, 1]
Output: An α-dominating setD ⊆ VInitializeD ← ∅FOR each vertex v ∈ VSet cov(v)← 0ENDFORWHILE there exists v ∈ V such that cov(v) < αµ(v)Select a vertex u ∈ V \D that maximizes the marginal increase∑

v∈V

min(αµ(v)− cov(v), ∆covu(v)) ,

where
∆covu(v) = max

{
µ(v)ω(u, v), λ max

w∈N(v)

(
µ(v)ω(u,w)ω(w, v)

)}
.

UpdateD ← D ∪ {u}FOR each vertex v ∈ VUpdate
cov(v)← max

(
cov(v),∆covu(v)

)
ENDFORENDWHILERETURND

Theorem 1 The greedy α-dominating set algorithm terminates in at most |V | iterations.
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Proof: At each iteration, a new vertex is added to the set D. Coverage values cov(v) are monotoni-cally non-decreasing and bounded above by µ(v). Since at least one previously under-covered vertexstrictly increases its coverage at each iteration, the loop cannot continue indefinitely. As no vertex isadded more than once, the algorithm terminates after at most |V | iterations.
Remark 3 The greedy algorithm runs in polynomial time, with worst-case complexity O(|V |3) due to
coverage updates. While optimality is not guaranteed, the algorithm provides an efficient heuristic
suitable for large networks.

3.2 Illustrative Example: Computation of an α-Dominating Set

In this section, we present a detailed example to illustrate the computation of an α-dominatingset in a fuzzy graph using the proposed coverage function and algorithm.
Example 1 Consider the fuzzy graph

G = (V,E, µ, ω),

where
V = {v1, v2, v3, v4}.

Assume uniform vertex memberships:

µ(vi) = 1 for all i = 1, 2, 3, 4.

The fuzzy edge memberships are given by:

ω(v1, v2) = 0.8, ω(v2, v3) = 0.7, ω(v3, v4) = 0.6, ω(v1, v3) = 0.4.

Let the domination parameters be

α = 0.5 and λ = 0.8.

���� ���� ���� ����
- - -v1 v2 v3 v4

�

0.8 0.7 0.6
0.4

Figure 1: Fuzzy graph used for computing an α-dominating set
Step-by-Step Computation:Initially, let

D = ∅, cov(vi) = 0 for all i.
Step 1: Selection of v1

The coverage contributions of the vertex v1 are computed as follows:
• Self-coverage:

cov(v1) = µ(v1) = 1.

• Direct coverage of v2:
cov(v2) = µ(v2)ω(v1, v2) = 0.8.
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• Direct coverage of v3:
cov(v3) = µ(v3)ω(v1, v3) = 0.4.

• Two-step coverage of v4 via v3:
cov(v4) = λµ(v4)ω(v1, v3)ω(v3, v4) = 0.8× 0.4× 0.6 = 0.192.

The coverage status after selecting v1 is shown in Table 1.
Vertex Coverage Required (αµ)
v1 1.000 0.5
v2 0.800 0.5
v3 0.400 0.5
v4 0.192 0.5

Table 1: Coverage after selecting v1
Thus,

D = {v1}.

Step 2: Selection of v3

Vertex v3 is added to increase the coverage of under-covered vertices.
• Self-coverage:

cov(v3) = 1.

• Direct coverage of v4:
cov(v4) = max(0.192, 0.6) = 0.6.

The updated coverage values are shown in Table 2.
Vertex Coverage Required (αµ)
v1 1.000 0.5
v2 0.800 0.5
v3 1.000 0.5
v4 0.600 0.5

Table 2: Coverage after selecting v3

Result

Since all vertices now satisfy
cov(vi) ≥ αµ(vi),

the set
D = {v1, v3}

is an α-dominating set of the fuzzy graph. Hence,
γ0.5(G) = 2.

This example demonstrates how the proposed greedy algorithm selects dominant vertices basedon maximal marginal coverage.
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Remark 4 This example demonstrates that domination in fuzzy graphs is verified vertex-wise. A vertex
may be dominated either through direct fuzzy influence or via a valid two-step influence path with
decay.

4. Theoretical Results
This section establishes bounds, monotonicity properties and exact domination numbers for com-plete fuzzy graphs and fuzzy paths, reduction to classical domination, Nordhaus-Gaddum type inequal-ities, fuzzy domatic bounds and stability under edge strength perturbations.

Theorem 2 (Upper bound on coverage; necessary condition for existence)
For every v ∈ V and every S ⊆ V we have

covS(v) ≤ µ(v).

Consequently, an α-dominating set can exist only if

min
v∈V

µ(v) ≥ α.

Proof: Every term inside the outer max defining covS(v) is of the form µ(v)× (something in [0, 1]).Therefore, all the three terms inside the outer max defining covS(v) are less or equal to µ(v)because λ, ω(u, v) ≤ 1. Taking the maximum of these three quantities cannot exceed µ(v). So
covS(v) ≤ µ(v).

If for some v ∈ V , we have µ(v) < α then covS(v) ≤ µ(v) < α for every subset S of V . Therefore,no α-dominating set can exist. hence the theorem follows.
Theorem 3 (Monotonicity): If 0 < α1 < α2 ≤ 1, then γα1(G) ≤ γα2(G).

Proof: LetG = (V, σ) be a fuzzy graph and let 0 < α1 < α2 ≤ 1. Take any α2-dominating setD ⊆ V ;then by definition, for every vertex
v ∈ V D we havemaxu∈D σ(u, v) ≥ α2.Since α2 > α1, it follows that
maxu∈D σ(u, v) ≥ α2 > α1,So the same setD satisfies the condition of an α1-dominating set.Therefore, every α2-dominating set is an α1-dominating set. Taking the minimum cardinalities onboth sides yields
γα1(G) ≤ γα2(G).This proves the monotonicity of the alpha-domination number with respect to the threshold pa-rameter α.

Theorem 4 Let G be a complete fuzzy graph of n vertices with ω(u, v) = x for every pair of distinct
vertices u ̸= v. Then

γα(G) = 1, if x ≥ α

= n if x < α
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Proof: Since the graph is complete and every off-diagonal edge has the same membership x.Two possibilities occur.
Case 1: x ≥ α.Choose any vertex u ∈ V . For every v ∈ V {u}, we have omega(u, v) = x ≥ α. Hence for eachsuch v

max
w∈{u}

ω(w, v) = ω(u, v) = x ≥ α.

So the singleton set {u} is an α-dominating set. Thus γα(G) ≤ 1 and since domination number isat least 1, we get
γα(G) = 1.

Case 2: x < α.For any two distinct vertices u, v we have omega(u, v) = x < α. Therefore, no vertex u can α-dominate any other vertex v. LetD ⊆ V be any α-dominating set. IfD ̸= V then pick a ∈ V \D; forthis a we would have
max
u∈D

ω(u, a) ≤ x < α,

contradicting the requirement that every vertex outside D be α-dominated. Hence V \ D must beempty, soD = V and the minimum size of an α-dominating set is n. Therefore
γα(G) = n.

Combining the two cases proves the theorem.
Theorem 5 (Lower Bound via Maximum Influence) LetG = (V,E, µ, ω) be a fuzzy graph and define

∆ω = max
u∈V

∑
v∈V

ω(u, v).

Then,

γα(G) ≥

⌈
α
∑

v∈V µ(v)

∆ω ·minv∈V µ(v)

⌉
.

Proof: Let S be an α-dominating set of minimum cardinality. Each vertex u ∈ S can influence, atmost, a total membership of ∑
v∈V

µ(v)ω(u, v) ≤ ∆ω ·min
v∈V

µ(v).

Since every vertex v must satisfy covS(v) ≥ αµ(v), the total required coverage over the graph is atleast
α
∑
v∈V

µ(v).

Thus, the size of S must be large enough so that the combined influence of its vertices reaches thistotal requirement. Hence,
|S| ·∆ω ·min

v∈V
µ(v) ≥ α

∑
v∈V

µ(v).

Rearranging yields the stated bound, which completes the proof.
Theorem 6 For α = 1, a set S is α-dominating iff

covS(v) = µ(v) ∀v ∈ V.
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Proof: (Sufficiency) If covS(v) = µ(v) for all v, then trivially covS(v) ≥ 1 · µ(v) and hence S is adominating set.(Necessity) Assume S is a 1-dominating set. Then by definition,

covS(v) ≥ µ(v).

However, due to the structure of the coverage function, no vertex can be covered beyond its ownmembership value. Hence equality must hold:
covS(v) = µ(v).

This completes the proof.
Theorem 7 (Monotonicity with Respect to Decay Factor) If 0 < λ1 ≤ λ2 ≤ 1, then

γα,λ2(G) ≤ γα,λ1(G).

Proof: Let S be an α-dominating set under decay factor λ1. Since λ2 ≥ λ1, the two-step influenceterm in the coverage function does not decrease. Therefore,
covλ2

S (v) ≥ covλ1
S (v)

for all v ∈ V . Thus S remains a valid α-dominating set under λ2 and the result follows.
Theorem 8 (Reduction to Classical Domination) If

µ(v) = 1 and ω(u, v) ∈ {0, 1}

for all vertices and edges, then

γα(G) = γ(G) for all α ≤ 1.

Proof: Under the given conditions, the fuzzy graph reduces to a classical crisp graph. The coveragefunction becomes
covS(v) =

{
1, if v ∈ S or v is adjacent to some u ∈ S,

0, otherwise.
Thus the α-domination condition coincides exactly with the definition of classical domination. There-fore,

γα(G) = γ(G).

This completes the proof.
Theorem 9 (Nordhaus–Gaddum Type Inequality) LetG be the fuzzy complement ofG, where

ω(u, v) = 1− ω(u, v).

Then,
1 ≤ γα(G) + γα(G) ≤ 2|V |.
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Proof: The lower bound follows immediately since both domination numbers are at least 1. The upperbound holds because the full vertex set V is trivially an α-dominating set for both G and G. Hence,each domination number is at most |V |, yielding

γα(G) + γα(G) ≤ 2|V |.

This completes the proof.
Theorem 10 (Domination in Fuzzy Path Graphs) Let Pn be a fuzzy path graph on n vertices with uni-
form edge membership value c ≥ α. Then,

γα(Pn) =
⌈n
3

⌉
.

Proof: When c ≥ α, a selected vertex covers itself and its immediate neighbors. Thus, a single dom-inating vertex covers at most three consecutive vertices. Placing dominating vertices at every thirdposition yields an α-dominating set of size ⌈n/3⌉. No smaller set can dominate all vertices, since thepath is linear. Therefore, the stated result holds.
4.1 Fuzzy Domatic Partition

Definition 5 A family {D1, D2, . . . , Dk} of pairwise disjoint subsets of V is called an α-domatic par-tition of a fuzzy graph G if each Di is an α-dominating set of G. The maximum possible value of k is
called the α-domatic number ofG and is denoted by dα(G).

Theorem 11 (Fuzzy Domatic Bound) LetG = (V,E, µ, ω) be a fuzzy graph and let

δω = min
v∈V

∑
u∈V

ω(v, u)

denote the minimum fuzzy degree ofG. Then,

dα(G) ≤ δω + 1.

Proof: Let {D1, D2, . . . , Dk} be an α-domatic partition of G. By definition, the sets Di are pairwisedisjoint and eachDi is an α-dominating set.Fix an arbitrary vertex v ∈ V . Since eachDi is α-dominating, v must satisfy
covDi

(v) ≥ αµ(v) for all i = 1, 2, . . . , k.

This implies that for each i, either:
• v ∈ Di, or
• there exists a vertex u ∈ Di such that ω(u, v) > 0 (direct or indirect influence).
Because the sets Di are disjoint, the vertex v can belong to at most one of them. Hence, for atleast k−1 of the dominating sets, the vertex vmust be influenced by distinct vertices outside of itself.Therefore, vmust have fuzzy adjacencywith at least k−1 distinct vertices inV \{v}. Consequently,the total fuzzy degree of v satisfies ∑

u∈V

ω(v, u) ≥ k − 1.
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Since v was arbitrary, this inequality holds for all vertices, and in particular for the vertex of mini-mum fuzzy degree. Hence,

δω ≥ k − 1,

which implies
k ≤ δω + 1.

As k = dα(G) was arbitrary, the result follows.
Remark 5 A largerα-domatic number indicates greater robustness of the network, asmultiple disjoint
fact-checking configurations can independently control misinformation spread.

4.2 Stability Under Edge Strength Perturbation

The next result will show that α-domination in fuzzy graphs is stable under small perturbations ofedge memberships. However, the domination number itself may change when α is fixed, indicatingthat stability holds at the level of domination feasibility rather than exact cardinality.
Theorem 12 (Stability of α-Domination) LetG = (V,E, µ, ω)bea fuzzy graphand letG′ = (V,E, µ, ω′)
be another fuzzy graph such that

|ω′(u, v)− ω(u, v)| ≤ ε for all u, v ∈ V.

If S is an α-dominating set ofG, then S is an (α− ε)-dominating set ofG′, provided α > ε.

Proof: Let S ⊆ V be an α-dominating set ofG. Then for every vertex v ∈ V ,
covS(v) ≥ αµ(v).

Consider the coverage of v in the perturbed graphG′. For direct influence, we have
µ(v)ω′(u, v) ≥ µ(v)

(
ω(u, v)− ε

)
= µ(v)ω(u, v)− εµ(v).

For the two-step influence term, using the restriction w ∈ N(v) and the decay factor λ ≤ 1, weobtain
µ(v)ω′(u,w)ω′(w, v) ≥ µ(v)

(
ω(u,w)− ε

)(
ω(w, v)− ε

)
.

Expanding and ignoring higher-order ε2 terms yields
µ(v)ω′(u,w)ω′(w, v) ≥ µ(v)ω(u,w)ω(w, v)− εµ(v).

Hence, in all cases, the coverage of v inG′ satisfies
cov′S(v) ≥ covS(v)− εµ(v).

Since covS(v) ≥ αµ(v), it follows that
cov′S(v) ≥ (α− ε)µ(v).

Therefore, S is an (α− ε)-dominating set ofG′.This result establishes the continuity of domination feasibility with respect to influence uncer-tainty.
Remark 6 The stability result is consistent with all previously established properties of α-domination,
includingmonotonicity inα, dependence on the decay factor, the reduction to classical domination and
the fuzzy domatic bound. The result strengthens the practical relevance of the model without altering
its structural foundations.
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5. Application to Fake News Control
In the digital age, online social networks are complex systems in which information spreads rapidlythrough interpersonal interactions that vary significantly in strength, reliability and frequency. In thesedynamic environments, misinformation behaves similarly to a rumor: once introduced, it can quicklypropagate from one individual to another, mainly depending on factors such as trust, influence andcommunication frequency. Given this fluidity, the modeling and management of misinformation re-quire sophisticated mathematical tools that can effectively capture the uncertainty inherent in socialinteractions and the graded nature of influence between individuals.The framework proposed in this paper models the social network as a fuzzy graph, denoted as:

G = (V,E, µ, ω). In this model, the vertices V represents users within the network and fuzzy edgememberships ω(u, v) are values within the interval [0, 1] that quantify the strength of influence ortrust between any two users u and v. These influence values can reflect factors such as interactionfrequency, users’ credibility scores, or the historical reliability of the content they share. The param-eter α ∈ (0, 1] represents the minimum influence threshold that must be met for a user to acceptinformation as credible. This threshold captures the varying degrees of skepticism and trust usersmay have when assessing the credibility of information circulating through the network.The concept of an α-dominating set, denoted as D ⊆ V is central to this framework. This setconsists of a strategically selected group of trusted users or fact-checkers who serve as reliable sourcesof truthwithin the network. Theα-dominating set ensures that every user in the network is sufficientlyinfluenced by at least one member of this trusted group, with influence strength not falling below thedefined threshold α. Specifically, the control mechanism relies on one of the following conditionsbeing met for each user in the network-Self-coverage: The user is part of the fact-checking setD.Direct influence: The user is directly influenced by a member of D and the influence strength isadequate.Indirect influence: The user is influenced through a two-step interaction with a member of D,where the combined influence is reduced but still sufficient.The approach proceeds by calculating a minimum α-dominating setD of the fuzzy social network,which serves as the core group of fact-checkers or trusted users. These users in D are designated asthe sources of verified or corrective information. The α-domination condition guarantees that eachuser in the network is influenced by at least one trusted source whose influence strength is at least α,thereby curbing the unchecked spread of misinformation.This model presents several key advantages over traditional crisp domination models. First, it nat-urally accommodates the varying influence strengths among users, an essential feature for reflectingthe complexities of real-world social networks, where influence is rarely uniform. Second, the thresh-old parameter α can be adjusted to account for different misinformation environments. For example,in high-risk scenarios such as public health crises, a higher threshold could be set to ensure greaterinfluence from fact-checkers. In contrast, in political contexts with lower trust, the threshold could betuned to promote broader propagation of trustworthy information. Furthermore, the framework canbe extended to incorporate personalized thresholds α(v), where each user may have different sus-ceptibilities to misinformation, allowing for a more granular and realistic representation of individualbehavior.Froman epidemiological perspective, the concept ofα-domination functions as a protectivemech-anism. Once a sufficient portion of the network is covered by trusted influence, the spread of misin-formation is significantly hindered, preventing it from sustaining widespread transmission. The nodesin the dominating set (the fact-checkers) intercept, correct, or suppress false information before itcan spread further, thereby increasing the network’s overall awareness and resilience. It is important
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to note that while this study focuses on static network structures, where the connections betweenusers do not change over time, it does not explicitly model dynamic user behavior. Future work couldexplore how such behaviormight evolve and how themodel could adapt to these changes in real time.
6. Concluding remarks

In this paper, we developed a comprehensive framework for α-domination in fuzzy graphs anddemonstrated its relevance to the control of fake news in online social networks. By introducing avertex-wise coverage function that accounts for both direct and two-step influence with decay, theproposed model captures the inherently uncertain and graded nature of social interactions more ac-curately than classical domination approaches.A range of theoretical results was established, including necessary conditions for the existenceof α-dominating sets, monotonicity properties with respect to the domination threshold and decayfactor, exact domination numbers for complete fuzzy graphs and fuzzy paths, lower bounds basedon influence capacity and Nordhaus-Gaddum type inequalities. The greedy algorithm proposed forcomputing α-dominating sets was shown to terminate efficiently, making the approach practical toimplement.The introduction of fuzzy domatic partitions further strengthened the theory by providing struc-tural bounds on the number of disjoint α-dominating sets, thereby extending classical domatic con-cepts to fuzzy networks. In addition, the stability analysis under edge strength perturbations demon-strated that α-domination is robust to slight variations in influence values, a crucial property for real-world social systems where trust and interaction strengths are inherently noisy and dynamic.From an application perspective, modeling misinformation containment as a fuzzy α-dominationproblem provides a principled method for identifying minimal sets of trusted users capable of sup-pressing fake news propagation. The framework allows flexible tuning of influence thresholds andnaturally supports heterogeneous user behavior, making it adaptable to diverse social and informa-tional contexts.Future research directions include extending the model to time-varying fuzzy graphs, incorporat-ing adaptive or personalized domination thresholds and integrating empirical social network data forlarge scale experimental validation. The proposed framework also opens avenues for studying fuzzydomination in multiplex and multilayer networks, where misinformation spreads across multiple plat-forms simultaneously.
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