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tic modeling. In this paper, we introduce an a-domination framework in fuzzy
graphs to model and control fake news propagation. We formally define fuzzy
coverage via direct and two-step influence with decay and establish theoretical
properties of the a-domination number, including upper bounds, monotonicity
and results for complete fuzzy graphs. we demonstrate how strategically selected
a-dominating sets can act as fact-checking nodes to effectively reduce misinfor-
mation spread. Our framework provides a mathematically rigorous and flexible
tool for misinformation containment under uncertainty, bridging fuzzy graph the-
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1. Introduction

The exponential growth of online social networking platforms has fundamentally transformed the
way information is produced, shared and consumed. While these platforms facilitate global communi-
cation, they enable the rapid spread of misinformation and fake news, leading to public panic, political
manipulation and erosion of trust. Classical graph models represent users as vertices and relationships
as edges with crisp (binary) values. However, real-world social interactions are inherently uncertain
and graded: trust levels vary among users, interactions may be intermittent and influence strengths
differ from one connection to another. These limitations motivate the use of fuzzy graphs, where both
vertices and edges are assigned membership values that represent the degree of presence or strength.

The foundation of fuzzy graphs goes back to Azriel Rosenfeld, who in 1975 extended classical graph-
theoretic concepts to the fuzzy-graph setting based on fuzzy relations. The first definition of fuzzy
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graph given by Kauffman [5] in 1973, was based on fuzzy relations presented by L. Zadeh [16]. Building
on Kauffman'’s idea, Rosenfeld (1975)[11] introduced the concept of fuzzy graphs by providing a com-
prehensive definition and establishing several foundational results as fuzzy analogs of classical graph
theory. Domination theory in graphs has been widely used in network control, monitoring and opti-
mization problems. A book on the subject of domination of graphs [4] lists over 1200 papers related
to domination of graphs and several thousand articles on the topic have appeared since the publica-
tion of the book. Nevertheless, most existing domination frameworks are based on crisp graphs and
fail to accommodate uncertainty in relationships. The study of domination in fuzzy graphs began (in
a systematic way) with A. Somasundaram and S. Somasundaram, who in 1998 introduced definitions
of dominating set, total dominating set, minimum dominating set and domination number for fuzzy
graphs[13]. A recent survey on the domination of fuzzy graphs is available in [10].

Although fuzzy domination has been studied, the concept of a-domination incorporating multi-
step influence in fuzzy networks remains underexplored, especially in the context of misinformation
containment. Research on misinformation containment often uses traditional graph-theoretic models,
such as the Susceptible-Infected (SI) epidemic model, or heuristic algorithms that balance the prop-
agation of positive information and the containment of negative information. Still, these generally
do not explicitly employ the mathematical framework of fuzzy domination. This represents a signifi-
cant gap, as social influence is rarely binary: trust between users can vary in degree, susceptibility to
false information can be topic dependent and influence may decay with distance. By addressing this
gap, the present work contributes a novel framework that combines fuzzy domination theory with
misinformation spread modeling that captures the uncertainty in social influence while optimizing in-
tervention placement. Unlike existing domination models in fuzzy graphs, the proposed framework
explicitly incorporates multi-step influence with decay and provides a coverage-based formulation that
aligns naturally with information propagation processes in social networks. The main contributions of
this paper are:

1. A novel definition of a-domination in fuzzy graphs incorporating direct and two-step influence
with decay.

2. Theoretical analysis including bounds, monotonicity and exact results for special fuzzy graph
classes.

3. Algorithmic computation of a-dominating sets.

4. Application to fake news control in social networks.

2. Preliminaries
Definition 1 (Fuzzy Graph) A fuzzy graph is an ordered quadruple
G = (V7E7/’[’7w)7

where V' is a non-empty finite set of vertices, E C V x V, u : V' — |0, 1] is the vertex membership
functionand w : V x V' — [0, 1] is the edge membership function.

We model a social network as a fuzzy graph where:
¢ Nodes are users with activity levels i (v).

o Edges are weighted by influence strengths w(u, v).
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e Fake news spreads along edges with probability proportional to w.
e An a-dominating set S is selected as monitors to inject fact-checking.

In misinformation contexts, influence is not binary. A user with higher credibility and stronger
connections is more likely to affect the opinions of others. Unless stated otherwise, the fuzzy graph is
assumed to be directed, with w(u, v) representing the influence of user « on user v.

2.1 «-Domination in Fuzzy Graphs
Definition 2 (Coverage Function) Let G = (V| E, i, w) be a fuzzy graph and let S C V. For any vertex
v € V, the coverage of v by S is defined as

covg(v) = max {,u(v).l{veg}, max (1(v). w(u,v)), . uesr’rqlvae)]cv(v) (1(v). w(u, w). w(w,v)) },

where N(v) = {x € V : w(z,v) > 0}and 0 < A < 1is a decay factor.

Note that coverage is computed for each vertex v, but with respect to a set S. The first term is the
direct membership, the second term is the direct neighbor influence and the third term is the two-
step influence. Therefore, it It aggregates self-membership, direct influence from vertices in S and
two-step influence from vertices in S.

Remark 1 The intermediate vertex w in the two-step influence term is restricted to the fuzzy neighbor-
hood of v to ensure that only valid length-two influence paths are considered.

Lemma 1 For a fixed vertex v € V, the coverage function covs(v) is monotone non-decreasing with
respect to set inclusion. Thatis, if S C T C V, then

covg(v) < covr(v).

Proof: Fixavertex v € V and let S C T C V. By definition,

covg(v) = max {u(v)l{veg}, max (1(v)w(u,v)), A ueS%ae)]cv(v) (1(v)w(u, w)w(w,v)) }

Since S C T, the following hold:

i ]-{UES} < 1{’UGT}’

* max,es ((v)w(u,v) < maxyer p(v)w(u,v),

® MaX,cs, weN () M(V)w(u, w)w(w,v) < maXyer, wen(w) #(V)w(u, w)w(w,v).

Multiplication by the constant decay factor A > 0 preserves the inequality. Therefore, each of the
three terms defining covg(v) is less than or equal to the corresponding term defining covy(v).
Taking the maximum of the three terms in each case yields

covg(v) < covy(v).

Hence, the coverage function is monotone non-decreasing with respect to set inclusion.
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Definition 3 (c-Dominating Set) Let o € (0, 1]. Aset S C V is an a-dominating set if

covg(v) > a.u(v) forallv e V.
where o € (0, 1] is a fixed threshold.

Definition 4 («-Domination Number) The a-domination number of G, denoted by ~,,(G), is the min-
imum cardinality of an a-dominating set.

Remark 2 The coverage function covs(v) is defined for each vertexv € V withrespecttoaset S C V.
There is no single numerical coverage associated with a set; rather, domination is verified by ensuring
that every vertex individually satisfies the «-coverage condition.

3. Greedy Algorithm

A greedy algorithm is proposed to compute an a-dominating set by iteratively selecting vertices
that maximize marginal coverage. The algorithm terminates in at most |V/| iterations since coverage
values are monotone and bounded.

3.1 Greedy Algorithm for a-Dominating Set

Algorithm
Input: Fuzzy graph G = (V, E, i, w), threshold « € (0, 1], decay factor A € (0, 1]
Output: An a-dominatingset D C V'
Initialize D « ()

FOR each vertexv € V

Set cov(v) < 0
ENDFOR
WHILE there exists v € V such that cov(v) < a u(v)
Select a vertex u € V'\ D that maximizes the marginal increase

Z min(au(v) — cov(v), Acovy(v)),

veV

where

Acov, (v) = max{u(v)w(u, v), A max_(p(v)w(u, w)w(w,v))} :

weN (v)

Update D < D U {u}
FOR each vertexv € V
Update

cov(v) + max (cov(v), Acov,(v))

ENDFOR
ENDWHILE
RETURN D

Theorem 1 The greedy a-dominating set algorithm terminates in at most |V | iterations.
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Proof: At each iteration, a new vertex is added to the set D. Coverage values cov(v) are monotoni-
cally non-decreasing and bounded above by 1i(v). Since at least one previously under-covered vertex
strictly increases its coverage at each iteration, the loop cannot continue indefinitely. As no vertex is
added more than once, the algorithm terminates after at most |V/| iterations.

Remark 3 The greedy algorithm runs in polynomial time, with worst-case complexity O(|V'|?) due to
coverage updates. While optimality is not guaranteed, the algorithm provides an efficient heuristic
suitable for large networks.

3.2 lllustrative Example: Computation of an a-Dominating Set

In this section, we present a detailed example to illustrate the computation of an a-dominating
set in a fuzzy graph using the proposed coverage function and algorithm.

Example 1 Consider the fuzzy graph
G = (V7 E? /’1’7 w)?

where
V - {Ula V2, U3, U4}'

Assume uniform vertex memberships:
p(v;) =1 foralli=1,2 3, 4.
The fuzzy edge memberships are given by:
w(vy,ve) = 0.8, w(ve,v3) =0.7, w(vs,vg) =0.6, w(vy,vs)=04.
Let the domination parameters be

a=05 and M\=0.2.8.

0.7

Figure 1: Fuzzy graph used for computing an a-dominating set

Step-by-Step Computation:
Initially, let
D =10, cov(v;) = 0 for all 4.

Step 1: Selection of vy
The coverage contributions of the vertex v, are computed as follows:

e Self-coverage:
cov(vy) = p(vy) = 1.

e Direct coverage of vy:
cov(vy) = p(ve)w(vy, v9) = 0.8.
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e Direct coverage of vs:
cov(vs) = p(vs)w(vy, v3) = 0.4.

e Two-step coverage of v, via v3:

cov(vg) = Ap(vg)w(vy, v3)w(vs, v4) = 0.8 x 0.4 x 0.6 = 0.192.

The coverage status after selecting v; is shown in Table 1.

Vertex Coverage Required (au)

vy 1.000 0.5
Vg 0.800 0.5
U3 0.400 0.5
Uy 0.192 0.5

Table 1: Coverage after selecting v;

Thus,
D = {Ul}.

Step 2: Selection of vs

Vertex vs is added to increase the coverage of under-covered vertices.

e Self-coverage:
cov(vg) = 1.

e Direct coverage of v,:
cov(vy) = max(0.192, 0.6) = 0.6.

The updated coverage values are shown in Table 2.

Vertex Coverage Required (o)

v 1.000 0.5
Vo 0.800 0.5
U3 1.000 0.5
V4 0.600 0.5

Table 2: Coverage after selecting v3

Result

Since all vertices now satisfy
cov(v;) > apu(v;),

the set
D= {Ul,?]g}
is an a-dominating set of the fuzzy graph. Hence,
Y0.5(G) = 2.

This example demonstrates how the proposed greedy algorithm selects dominant vertices based
on maximal marginal coverage.
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Remark 4 This example demonstrates that domination in fuzzy graphs is verified vertex-wise. A vertex
may be dominated either through direct fuzzy influence or via a valid two-step influence path with
decay.

4. Theoretical Results

This section establishes bounds, monotonicity properties and exact domination numbers for com-
plete fuzzy graphs and fuzzy paths, reduction to classical domination, Nordhaus-Gaddum type inequal-
ities, fuzzy domatic bounds and stability under edge strength perturbations.

Theorem 2 (Upper bound on coverage; necessary condition for existence)
For every v € V and every S C V we have

covs(v) < p(v).
Consequently, an a-dominating set can exist only if

: > q
min wv) >«
Proof: Every term inside the outer max defining covg(v) is of the form p(v)x (something in [0, 1]).
Therefore, all the three terms inside the outer max defining covg(v) are less or equal to p(v)
because A\, w(u,v) < 1. Taking the maximum of these three quantities cannot exceed p(v). So

covg(v) < u(v).

If for some v € V, we have p(v) < a then covg(v) < p(v) < a for every subset S of V. Therefore,
no a-dominating set can exist. hence the theorem follows.

Theorem 3 (Monotonicity): If 0 < o < ap < 1, then 74, (6) < Yas(c)-

Proof: Let G = (V, o) be a fuzzy graph and let 0 < a; < ay < 1. Take any ap-dominating set D C V;
then by definition, for every vertex

v € V D we have max,cp o(u,v) > as.

Since oy > «p, it follows that

max,ep o(u,v) > as > ay,

So the same set D satisfies the condition of an a;-dominating set.

Therefore, every as-dominating set is an a;-dominating set. Taking the minimum cardinalities on
both sides yields

Va1 (G) < Vas(G)-

This proves the monotonicity of the alpha-domination number with respect to the threshold pa-
rameter a.

Theorem 4 Let G be a complete fuzzy graph of n vertices with w(u,v) = x for every pair of distinct
vertices u # v. Then
Ya@)y =1, 1f x>«

=nifr<a«a
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Proof: Since the graph is complete and every off-diagonal edge has the same membership z.
Two possibilities occur.
Case1:z > «.
Choose any vertex u € V. For every v € V {u}, we have omega(u,v) = = > «. Hence for each
such v
max w(w,v) = w(u,v) =z > a.
we{u}
So the singleton set {u} is an a-dominating set. Thus Ya(ey < 1 and since domination number is
at least 1, we get
Ya(@) = L.
Case 2: r < a.
For any two distinct vertices u, v we have omega(u,v) = x < a. Therefore, no vertex u can a-
dominate any other vertex v. Let D C V' be any a-dominating set. If D # V then picka € V'\ D; for

this ¢ we would have

maxw(u,a) <z < a,
ueD

contradicting the requirement that every vertex outside D be a-dominated. Hence V' \ D must be
empty, so D = V and the minimum size of an a-dominating set is n. Therefore

Ya(G) = .
Combining the two cases proves the theorem.

Theorem 5 (Lower Bound via Maximum Influence) Let G = (V, E, i, w) be a fuzzy graph and define

A, =max Y w(u,v).

Then,

WQ(G)Z{ QZUEVM(U) “

Aw : minvGV IU(U)

Proof: Let S be an a-dominating set of minimum cardinality. Each vertex © € S can influence, at
most, a total membership of

Z p(v)w(u,v) < A, - min u(v).

veV
veV

Since every vertex v must satisfy covg(v) > au(v), the total required coverage over the graph is at

least
a Z w(v).

veV

Thus, the size of S must be large enough so that the combined influence of its vertices reaches this
total requirement. Hence,

|S] - A, - min p(v) > az,u(v).

veV
veV

Rearranging yields the stated bound, which completes the proof.

Theorem 6 For o = 1, a set S is a-dominating iff

covg(v) = u(v) Yo eV,
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Proof: (Sufficiency) If covg(v) = u(v) for all v, then trivially covg(v) > 1 - p(v) and hence S'is a
dominating set.
(Necessity) Assume S is a 1-dominating set. Then by definition,

covg(v) > p(v).

However, due to the structure of the coverage function, no vertex can be covered beyond its own
membership value. Hence equality must hold:

covg(v) = p(v).
This completes the proof.
Theorem 7 (Monotonicity with Respect to Decay Factor) If 0 < A\; < Ay < 1, then
Yo (G) < Yo (G).

Proof: Let S be an a-dominating set under decay factor ;. Since A\, > \;, the two-step influence
term in the coverage function does not decrease. Therefore,

covy (v) > covy (v)
for all v € V. Thus S remains a valid a-dominating set under A5 and the result follows.
Theorem 8 (Reduction to Classical Domination) If
p(v)=1 and w(u,v)e€ {0,1}
for all vertices and edges, then

Ya(G) =v(G) forall a<1.

Proof: Under the given conditions, the fuzzy graph reduces to a classical crisp graph. The coverage
function becomes

(v) 1, ifv e Sorwisadjacenttosomeu € S,
COVv =
5 0, otherwise.

Thus the a-domination condition coincides exactly with the definition of classical domination. There-
fore,

This completes the proof.
Theorem 9 (Nordhaus-Gaddum Type Inequality) Let G be the fuzzy complement of G, where
W(u,v) =1—w(u,v).

Then, o
1 <7,(G) +7.(G) <2V
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Proof: The lower bound follows immediately since both domination numbers are at least 1. lhe upper
bound holds because the full vertex set V' is trivially an a-dominating set for both G and (. Hence,
each domination number is at most |V/|, yielding

1a(G) +7a(G) < 2|V,
This completes the proof.

Theorem 10 (Domination in Fuzzy Path Graphs) Let P, be a fuzzy path graph on n vertices with uni-
form edge membership value ¢ > «. Then,

Proof: When ¢ > «, a selected vertex covers itself and its immediate neighbors. Thus, a single dom-
inating vertex covers at most three consecutive vertices. Placing dominating vertices at every third
position yields an a-dominating set of size [n/3]. No smaller set can dominate all vertices, since the
path is linear. Therefore, the stated result holds.

4.1 Fuzzy Domatic Partition

Definition 5 A family { D1, D, ..., Dy} of pairwise disjoint subsets of V' is called an a-domatic par-
tition of a fuzzy graph G if each D, is an a-dominating set of (G. The maximum possible value of k is
called the a-domatic number of G and is denoted by d,(G).

Theorem 11 (Fuzzy Domatic Bound) Let G = (V, E, i, w) be a fuzzy graph and let

0y = min » w(v,u)

denote the minimum fuzzy degree of G. Then,
do(G) <6, + 1.

Proof: Let { D1, D, ..., D;} be an a-domatic partition of GG. By definition, the sets D; are pairwise
disjoint and each D, is an a-dominating set.
Fix an arbitrary vertex v € V. Since each D, is a-dominating, v must satisfy

covp,(v) > ap(v) foralli=1,2,... k.
This implies that for each i, either:
e veED,;,or
e there exists a vertex u € D; such that w(u, v) > 0 (direct or indirect influence).

Because the sets D; are disjoint, the vertex v can belong to at most one of them. Hence, for at
least £ — 1 of the dominating sets, the vertex v must be influenced by distinct vertices outside of itself.
Therefore, v must have fuzzy adjacency with at least k—1 distinct verticesin V'\ {v}. Consequently,
the total fuzzy degree of v satisfies
Zw(v,u) >k—1.

ueV
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Since v was arbitrary, this inequality holds for all vertices, and in particular for the vertex of mini-
mum fuzzy degree. Hence,
0, > k—1,

which implies
E<é,+ 1.

As k = d,(G) was arbitrary, the result follows.

Remark 5 Alarger a-domatic number indicates greater robustness of the network, as multiple disjoint
fact-checking configurations can independently control misinformation spread.

4.2 Stability Under Edge Strength Perturbation

The next result will show that a-domination in fuzzy graphs is stable under small perturbations of
edge memberships. However, the domination number itself may change when « is fixed, indicating
that stability holds at the level of domination feasibility rather than exact cardinality.

Theorem 12 (Stability of a-Domination) Let G = (V, E, i, w) be afuzzy graphandlet G’ = (V, E, u, w'’)
be another fuzzy graph such that

|w'(u,v) — w(u,v)| <e forallu,v e V.
If S is an a-dominating set of G, then S is an (o — ¢)-dominating set of G’, provided o > .
Proof: Let S C V be an a-dominating set of G. Then for every vertex v € V,
covg(v) > a p(v).
Consider the coverage of v in the perturbed graph G. For direct influence, we have
) (1, 0) 2 a(v) (@, v) — €) = plv)w(u, v) — ep(v).

For the two-step influence term, using the restriction w € N(v) and the decay factor A < 1, we
obtain

(V) (u, w)w' (w,v) > pv) (wlu,w) — &) (w(w,v) — &).
Expanding and ignoring higher-order 2 terms yields
p()o (u, w)w'(w,v) 2 p(v)w(u, w)w(w,v) — epu(v).
Hence, in all cases, the coverage of v in G’ satisfies
covig(v) > covg(v) — ep(v).
Since covg(v) > au(v), it follows that
covig(v) = (o — €)p(v).

Therefore, S'is an (o — ¢)-dominating set of G'.
This result establishes the continuity of domination feasibility with respect to influence uncer-
tainty.

Remark 6 The stability result is consistent with all previously established properties of o.-domination,
including monotonicity in o, dependence on the decay factor, the reduction to classical domination and
the fuzzy domatic bound. The result strengthens the practical relevance of the model without altering
its structural foundations.
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5. Application to Fake News Control

In the digital age, online social networks are complex systems in which information spreads rapidly
through interpersonal interactions that vary significantly in strength, reliability and frequency. In these
dynamic environments, misinformation behaves similarly to a rumor: once introduced, it can quickly
propagate from one individual to another, mainly depending on factors such as trust, influence and
communication frequency. Given this fluidity, the modeling and management of misinformation re-
quire sophisticated mathematical tools that can effectively capture the uncertainty inherent in social
interactions and the graded nature of influence between individuals.

The framework proposed in this paper models the social network as a fuzzy graph, denoted as:
G = (V, E, p,w). In this model, the vertices V' represents users within the network and fuzzy edge
memberships w(u, v) are values within the interval [0, 1] that quantify the strength of influence or
trust between any two users u and v. These influence values can reflect factors such as interaction
frequency, users’ credibility scores, or the historical reliability of the content they share. The param-
eter « € (0, 1] represents the minimum influence threshold that must be met for a user to accept
information as credible. This threshold captures the varying degrees of skepticism and trust users
may have when assessing the credibility of information circulating through the network.

The concept of an a-dominating set, denoted as D C V is central to this framework. This set
consists of a strategically selected group of trusted users or fact-checkers who serve as reliable sources
of truth within the network. The a-dominating set ensures that every user in the network is sufficiently
influenced by at least one member of this trusted group, with influence strength not falling below the
defined threshold «. Specifically, the control mechanism relies on one of the following conditions
being met for each user in the network-

Self-coverage: The user is part of the fact-checking set D.

Direct influence: The user is directly influenced by a member of D and the influence strength is
adequate.

Indirect influence: The user is influenced through a two-step interaction with a member of D,
where the combined influence is reduced but still sufficient.

The approach proceeds by calculating a minimum a-dominating set D of the fuzzy social network,
which serves as the core group of fact-checkers or trusted users. These users in D are designated as
the sources of verified or corrective information. The a-domination condition guarantees that each
user in the network is influenced by at least one trusted source whose influence strength is at least «,
thereby curbing the unchecked spread of misinformation.

This model presents several key advantages over traditional crisp domination models. First, it nat-
urally accommodates the varying influence strengths among users, an essential feature for reflecting
the complexities of real-world social networks, where influence is rarely uniform. Second, the thresh-
old parameter « can be adjusted to account for different misinformation environments. For example,
in high-risk scenarios such as public health crises, a higher threshold could be set to ensure greater
influence from fact-checkers. In contrast, in political contexts with lower trust, the threshold could be
tuned to promote broader propagation of trustworthy information. Furthermore, the framework can
be extended to incorporate personalized thresholds «(v), where each user may have different sus-
ceptibilities to misinformation, allowing for a more granular and realistic representation of individual
behavior.

From an epidemiological perspective, the concept of a-domination functions as a protective mech-
anism. Once a sufficient portion of the network is covered by trusted influence, the spread of misin-
formation is significantly hindered, preventing it from sustaining widespread transmission. The nodes
in the dominating set (the fact-checkers) intercept, correct, or suppress false information before it
can spread further, thereby increasing the network’s overall awareness and resilience. It is important
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to note that while this study focuses on static network structures, where the connections between
users do not change over time, it does not explicitly model dynamic user behavior. Future work could
explore how such behavior might evolve and how the model could adapt to these changes in real time.

6. Concluding remarks

In this paper, we developed a comprehensive framework for a.-domination in fuzzy graphs and
demonstrated its relevance to the control of fake news in online social networks. By introducing a
vertex-wise coverage function that accounts for both direct and two-step influence with decay, the
proposed model captures the inherently uncertain and graded nature of social interactions more ac-
curately than classical domination approaches.

A range of theoretical results was established, including necessary conditions for the existence
of a-dominating sets, monotonicity properties with respect to the domination threshold and decay
factor, exact domination numbers for complete fuzzy graphs and fuzzy paths, lower bounds based
on influence capacity and Nordhaus-Gaddum type inequalities. The greedy algorithm proposed for
computing a-dominating sets was shown to terminate efficiently, making the approach practical to
implement.

The introduction of fuzzy domatic partitions further strengthened the theory by providing struc-
tural bounds on the number of disjoint a-dominating sets, thereby extending classical domatic con-
cepts to fuzzy networks. In addition, the stability analysis under edge strength perturbations demon-
strated that a-domination is robust to slight variations in influence values, a crucial property for real-
world social systems where trust and interaction strengths are inherently noisy and dynamic.

From an application perspective, modeling misinformation containment as a fuzzy a-domination
problem provides a principled method for identifying minimal sets of trusted users capable of sup-
pressing fake news propagation. The framework allows flexible tuning of influence thresholds and
naturally supports heterogeneous user behavior, making it adaptable to diverse social and informa-
tional contexts.

Future research directions include extending the model to time-varying fuzzy graphs, incorporat-
ing adaptive or personalized domination thresholds and integrating empirical social network data for
large scale experimental validation. The proposed framework also opens avenues for studying fuzzy
domination in multiplex and multilayer networks, where misinformation spreads across multiple plat-
forms simultaneously.
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