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Archimedean t-norm provides an advantage to represent the formal structure ofaggregation operators (AOs) in a simpler form i.e., from a multivariate to uni-variate function through an additive generator. This study focuses on q-rung or-thopair fuzzy numbers, a field typically governed by t-norms. So in this paper, weintroduced Hamy mean and weighted Hamy mean operators for q-rung orthopairfuzzy numbers under a generalized construction of continuous and Archimedeanclasses of t-norms. To further develop a comprehensive AO-based multi-criteriagroup decision-making model, an objective weight determination approach, theq-rung orthopair fuzzy Archimedean ordinal priority approach, is used to system-atically evaluate attribute weights. Finally, the constructed approach is demon-strated in practice through a detailed illustration of a real-world decision-makingproblem.Keywords:Archimedean t-norm; Hamy mean;Multi-criteria group decision mak-ing; q-Rung orthopair fuzzy set

1. Introduction

The integration of fuzzy sets into multi-criteria group decision making (MCGDM) represents a sig-nificant advancement, effectively addressing the inherent uncertainty often encountered in manydecision-making situations. Fuzzy set [34] establishes a mathematical framework for dealing withimprecision and ambiguity, making it particularly well-suited for applications in decision science. Anextension of fuzzy sets, the intuitionistic fuzzy set (IFS) [2] emerged as a more effective means ofhandling uncertainty. It encompasses membership and non-membership degrees along with the hes-itation degree, offering decision makers (DMs) a more refined depiction of uncertainty. Building uponthese advancements, Pythagorean fuzzy set (PFS) [32] and then Fermentean fuzzy set (FFS) [27], offer
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a more comprehensive framework. This enhancement enables DMs to articulate their assessmentsclearly, leading to a precise depiction of the contexts. In recent years, q-rung orthopair fuzzy set (q-ROFS) [33] has emerged as a versatile extension of the orthopair family of fuzzy sets. It introducesa parameter q to regulate the degree of hesitancy, providing DMs with a flexible means of handlingvagueness in decision-making. This generalized framework enables DMs to capture and reflect theinvolved vagueness in human perceptions and the linguistic representation used for attribute evalua-tion.Archimedean t-norms (ATNs) (or Archimedean t-conorms (ATCNs)) provide a flexible mathematicalconstruction for modelling the and and or notions in the fuzzy set framework. ATNs are not neces-sarily continuous; a continuous ATN is strictly increasing on the subset where its value is greater thanzero [4]. One key advantage of continuous ATNs and ATCNs is their representation via an additivegenerator (AG), which simplifies computation by transforming a multivariate function into its univari-ate generator [12]. Over time, researchers have used these ATNs and ATCNs to develop aggregationoperators (AOs) for decision-making methods [3, 29, 30]. AOs are essential for integrating varioussources of information and for representing preferences for attributes in decision-making. Specifi-cally, weighted AOs have been instrumental in aggregating conflicting criteria and preferences withinfuzzy MCGDM contexts [3]. In this row, the WA operator for q-run orthopair fuzzy numbers (q-ROFNs)has been extensively studied by various researchers under different t-norms that is Liu and Wang [14]used algebraic t-norm, Jana et al. [11] applied Dombi t-norm, Darko and Liang [6] utilized Hamachert-norm, Seikh and Mandal [24] used Frank t-norm, and Senapati et al. [26] implemented Aczél-Alsinat-norm, all these t-norms are continuous Archimedean. Similarly, various other AOs for q-ROFNs arealso studied under such continuous ATNs [16]. On the other side, Liu and Wang [13] de-fine some ATN-based arithmetic operations for q-ROFNs and utilize them to develop Bonferroni mean(BM) and weighted BM operators. Such a construction provides a general architecture in an AO toaggregate a finite number of q-ROFNs. In this regard, Qin et al. [19] constructed the Archimedeanpower partitioned Muirhead mean (MM) and weighted MM operators of q-ROFNs. In a similar man-ner, Qin et al. [20] proposed the q-ROF Archimedean power partitioned weighted BM operator anddeveloped an MCDM approach based on the suggested AO. Further, to decrease the deviation causedby the subjective perspective of the DM in the MCGDM problems, Shao et al. [28] introduced the con-fidence q-ROF Archimedean weighted averaging (WA), weighted geometric (WG), ordered weightedaveraging (OWA), and ordered weighted geometric (OWG) operators. Ai et al. [1] suggested a newrepresentation of Archimedean arithmetic operations of q-ROFNs from the perspective of q-rung or-thopair fuzzy (q-ROF) representation theorem, and the same representation is used in this chapterfor avoiding failure of ψ(t) = ϕ(1 − t) condition (see subsection 2.3). Recently, Seikh and Mandal[25] utilized Ai et al.’s [1] framework of Archimedean arithmetic operations for developing the WA op-erator under the q-rung orthopair fuzzy environment (q-ROFE). It is evident from the literature thatthere is no construction of the Hamy mean (HM) operator within the general framework of ATN andATCN for any orthopair fuzzy information. The Hammy symmetric function, now known as HM, canhandle correlations among k-attributes via a parameter k. Hara et al. [10] discussed a refinement ofthe arithmetic mean (AM) and geometric mean (GM) through an inequality and showed the existenceof HM between AM and GM. Therefore, HM is also considered a generalization of AM and GM, makingit an important player in the domain of AO. Thus, we developed the HM and its weighted variant forq-ROFNs under ATN and ATCN setups.A crucial aspect of weighted AOs is the assignment of weights to attributes, which significantlyimpacts the decision-making process. Over time, researchers have explored various methods to de-termine appropriate weights for different attributes based on their relative significance [5]. To evalu-ate the significance of each attribute, various objective weight-finding techniques are helpful for DMs.One such method is the ordinal priority approach (OPA), which utilizes a linear programming model
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to compute attributes’ weights. Deveci et al. [8] introduced the q-ROF-OPA, while Pamucar et al.[15] proposed an OPA based on Schweizer-Sklar norms. Recently, Rawat and Komal [21] suggested aq-ROF-OPA based on ATNs and ATCNs, i.e., q-ROF Archimedean OPA (q-ROFAOPA). In this paper, wedeveloped an optimization model based on OPA under ATNs and ATCNs for q-ROFNs, incorporating theproposed q-ROF Archimedean weighted Hamy mean (q-ROFAWHM) operator to introduce an MCGDMmethod. Finally, we discussed its real-world application to the selection of rehabilitation strategies us-ing the q-ROFAWHM operator and the q-ROF Archimedean OPA (q-ROFAOPA)-based MCGDM model.The suggested technique addresses complex decision-making scenarios in which multiple DMs andcriteria jointly determine the final outcome. This MCGDM framework offers a structured approachto facilitating group decision-making by incorporating the assessments and competence of severalDMs. Since DMs often face challenges in evaluating and ordering alternatives across multiple crite-ria, the primary goal of the proposed MCGDM is to ensure a well-informed, comprehensive decisionthat reflects the expert group’s varying perspectives and priorities. This approach not only integratesindividual preferences using the q-ROFAWHM aggregation operator but also addresses conflicts andinherent uncertainties in the decision process [17, 23, 31]. Additionally, the methodology employs anAO named q-ROFAWHM and an optimization technique named q-ROFAOPA to identify a satisfactorycriterion for importance.The paper is structured as follows: In section 2, we discuss preliminary concepts, including q-ROFS, ATN, ATCN, HM, and Archimedean operations of q-ROFNs. In section 3, we introduced the q-ROFArchimedean HM (q-ROFAHM) and q-ROF Archimedean weighted HM (q-ROFAWHM) operators, alongwith some specific cases of the q-ROFAWHM operator. In section 4, the objective weights evaluationtechnique, i.e., q-ROFAOPA, is discussed. In section 5, we proposed an MCGDM method based on theq-ROFAOPA and q-ROFAWHM operators; additionally, its applicability is also illustrated by analyzinga practical problem of strategy selection related to rehabilitation. Finally, section 6 discussed someconcluding remarks on the paper.
2. Preliminary

2.1 q-Rung Orthopair Fuzzy Set

Definition 1 ([33]) A q-ROFS A on a domain of discourse D is a collection of elements with theirorthopair membership grades (µA(x), νA(x)), which is defined as
A = {(x, (µA(x), νA(x))) | x ∈ D} (1)

where µA(x) ∈ [0, 1] and νA(x) ∈ [0, 1] indicates support for and support against membership of xin A and satisfies the qth degree inequality µq
A(x) + νqA(x) ≤ 1, q ≥ 1.The πA(x) = q

√
1− (µA(x))q − (νA(x))q is the hesitancy of x in A. The (µA, νA) ∈ Q is calledq-ROFN, where Q denotes the set of q-ROFNs.

Note 1: For q = 1, 2, and 3, the q-ROFS is reduced to the IFS [2], PFS [32], and FFS [27], respectively,and their geometric representation can be seen through Figure 1.
2.2 Score and Accuracy Functions

Definition 2 ([14]) Suppose αi = (µαi
, ναi

) or simply (µi, νi) is a q-ROFN; the score function S forq-ROFNs is a real-valued function that is defined as follows:
S(αi) = µq

i − νqi (2)
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Figure 1: Geometrical representation of q-rung orthopair fuzzy values
where S(αi) ∈ [−1, 1] and higher the score value S(A) means bigger the q-ROFN.
Definition 3 ([14]) Suppose αi = (µi, νi) is a q-ROFN; the accuracy function H for q-ROFNs is a real-valued function that is defined as follows:

H(αi) = µq
i + νqi (3)

where H(αi) ∈ [0, 1] a greater accuracy value ensures a larger q-ROFN. Usually, the accuracy of q-ROFNs is calculated only when their score values are the same. Further, using the score and accuracyfunctions, an order can be defined for q-ROFNs.
Let α1 and α2 be q-ROFNs. Then the order between these two values is defined as follows [14]:
1. If S(α1) < S(α2) =⇒ α1 < α2.
2. If S(α1) = S(α2), then compare their accuracy values

(a) If H(α1) < H(α2) =⇒ α1 < α2.
(b) If H(α1) = H(α2) =⇒ α1 = α2.

Several studies report score functions that can directly rank q-ROFNs, thereby eliminating the needfor a separate accuracy function. Adding to this discourse, Rawat et al. [22] have introduced a newscore function, articulated as follows:
Sc(αi) =

1

2

(
(µq

i − νqi + 1)− 1

π3
cos
(
(1− πq

i )
π

2

)) (4)
where πi is a hesitancy associated with a q-ROFN.
2.3 Archimedean T-norm and T-conorm

Definition 4 ([4]) A t-norm T is said to be an ATN if for every (x, y) ∈ (0, 1)2 ∃ a k ∈ N s.t.
T (

k−times︷ ︸︸ ︷
x, . . . , x) < y. That is, for any a ∈ (0, 1) lim

k→∞
Tk(

k−times︷ ︸︸ ︷
a, . . . , a) = 0 and, only 0 and 1 are the idempo-

tent elements of T .
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ATNs need not be continuous. Moreover, the existence of a limit alone is not sufficient to ensurethe continuity of a t-norm.
A continuous ATN T can be defined by its strictly decreasing AG ϕ : [0, 1] → [0,∞] s.t. ϕ(1) = 0,as follows:

T (x, y) = ϕ−1(ϕ(x) + ϕ(y)) (5)
Definition 5 ([4]) A t-norm S is said to be an ATCN if for every (x, y) ∈ (0, 1)2 ∃ a k ∈ N with
S(

k−times︷ ︸︸ ︷
x, . . . , x) > y.
A continuous ATCN S can be defined by its strictly increasing AGψ : [0, 1] → [0,∞] withψ(0) = 0,as follows:

S(x, y) = ψ−1(ψ(x) + ψ(y)) (6)
For an AG ϕ : [0, 1] → [0,∞] of a t-norm. The AG of t-conorm S, ψ : [0, 1] → [0,∞], is given by

ψ(t) = ϕ(1− t).
In fuzzy set theory, t-norms serve as the intersection operation, and t-conorms as the union oper-ation. Various t-norms and t-conorms, such as Aczél-Alsina, Dombi, Frank, and Hamacher, are used todefine basic operations for q-ROFNs. Table 1 present some continuous q-ROF ATNs given in [1] from theperspectives of q-ROF representation theorem. That are, algebraic (TA), Aczél-Alsina (TAA)γ∈(0,∞),Dombi (TD)γ∈(0,∞), Frank (T F )γ∈(0,∞], and Hamacher (TH)γ∈[0,∞) t-norms with their continuous andstrictly decreasing AGs [12].

Table 1: Archimedean t-norms for q-ROFNs
Name Triangular norm (T ) Additive generator (ϕ)Algebraic TA(xq, yq) = x · y ϕA(tq) = − log tq

Aczél-Alsina TAA
γ∈(0,∞)(x

q, yq) =

(
e−((− log xq)γ+(− log yq)γ)

1
γ

) 1
q

ϕAA
γ∈(0,∞)(t

q) = (− log tq)γ

Dombi TD
γ∈(0,∞)(x

q, yq) =

 1

1 +

((
1− xq

xq

)γ

+

(
1− yq

yq

)γ) 1
γ


1
q

ϕD
γ∈(0,∞)(t

q) =

(
1− tq

tq

)γ

Frank T F
γ∈(0,∞](x

q, yq) =


x · y, γ = 1;

max
(
(xq + yq − 1)

1
q , 0
)
, γ = ∞;(

logγ

(
1 +

(γx
q − 1)(γy

q − 1)

(γ − 1)

)) 1
q

, else.

ϕF
γ∈(0,∞](t

q) =


− log tq, γ = 1;

1− tq, γ = ∞;

log

(
γ − 1

γtq − 1

)
, else.

Hamacher TH
γ∈[0,∞)(x

q, yq) =


0, γ = u = v = 0;(

xqyq

γ + (1− γ)(xq + yq − xqyq)

) 1
q

, else.
ϕH
γ∈[0,∞)(t

q) =


1− tq

tq
, γ = 0;

log

(
γ + (1− γ)tq

tq

)
, else.

Similarly, Table 2 contains some continuous q-ROF ATCNs (SA, SAA
γ∈(0,∞), SD

γ∈(0,∞), SF
γ∈(0,∞], and

SH
γ∈[0,∞)) with continuous and strictly increasing AGs from the perspectives of the q-ROF representa-tion theorem [1].
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Table 2: Archimedean t-conorms for q-ROFNs

Name Triangular cornorm (S) Additive generator (ψ)
Algebraic SA(xq, yq) = (xq + yq − xqyq)

1
q ψA(tq) = − log(1− tq)

Aczél-Alsina SAA
γ∈(0,∞)(x

q, yq) =

(
1− e−((− log(1−xq))γ+(− log(1−yq))γ)

1
γ

) 1
q

ψAA
γ∈(0,∞)(t

q) = (− log(1− tq))γ

Dombi SD
γ∈(0,∞)(x

q, yq) =

1− 1

1 +

((
xq

1− xq

)γ

+

(
yq

1− yq

)γ) 1
γ


1
q

ψD
γ∈(0,∞)(t

q) =

(
tq

1− tq

)γ

Frank SF
γ∈(0,∞](x

q, yq) =


(xq + yq − xqyq)

1
q , γ = 1;

min
(
(xq + yq)

1
q , 1
)
, γ = ∞;(

1− logγ

(
1 +

(γ1−xq − 1)(γ1−yq − 1)

(γ − 1)

)) 1
q

, else.

ψF
γ∈(0,∞](t

q) =


− log(1− tq), γ = 1;

tq, γ = ∞;

log

(
γ − 1

γ1−tq − 1

)
, else.

Hamacher SH
γ∈[0,∞)(x

q, yq) =


1, γ = 0 and u = v = 1;(
xq + yq − xqyq − (1− γ)xqyq

1− (1− γ)xqyq

) 1
q

, else.
ψH
γ∈[0,∞)(t

q) =


tq

1− tq
, γ = 0;

log

(
γ + (1− γ)(1− tq)

1− tq

)
, else.

2.4 Archimedean T-norm and T-conorm Based Operations

Let α1 and α2 be two q-ROFNs, and let ϕ and ψ are strictly decreasing and increasing AG of T and
S, respectively, and λ > 0 [1].

1. α1 ⊕ α2 =
(
(ψ−1(ψ(µq

1) + ψ(µq
2)))

1
q ,
(
ϕ−1(ϕ(νq1) + ϕ(νqα2

))
) 1

q

);
2. α1 ⊗ α2 =

(
(ϕ−1(ϕ(µq

1) + ϕ(µq
2)))

1
q , (ψ−1(ψ(νq1) + ψ(νq2)))

1
q

);
3. λα1 =

(
(ψ−1(λψ(µq

1)))
1
q , (ϕ−1(λϕ(νq1)))

1
q

);
4. αλ

1 =
(
(ϕ−1(λϕ(µq

1)))
1
q , (ψ−1(λψ(νq1)))

1
q

).
The results obtained by the above-mentioned rules are q-ROFNs. Moreover, the first two opera-tions can be generalized to a finite collection of q-ROFNs.
1. n⊕

i=1

αi =

(ψ−1

(
n∑

i=1

ψ(µq
i )

)) 1
q

,

(
ϕ−1

(
n∑

i=1

ϕ(νqi )

)) 1
q

;

2. n⊗
i=1

αi =

(ϕ−1

(
n∑

i=1

ϕ(µq
i )

)) 1
q

,

(
ψ−1

(
n∑

i=1

ψ(νqi )

)) 1
q

.
Let α1, and α2 are two q-ROFNs and let λ1, λ2 > 0, then some fundamental properties hold bythese operations are as follows [13]:

(i) α1 ⊕ α2 = α2 ⊕ α1;
(ii) α1 ⊗ α2 = α2 ⊗ α1;

(iii) λ1(α1 ⊕ α2) = λ1α1 ⊕ λ1α2;

(iv) αλ1
1 ⊗ αλ1

2 = (α1 ⊗ α2)
λ1 ;

(v) λ1α1 ⊕ λ2α1 = (λ1 + λ2)α1;
(vi) αλ1

1 ⊗ αλ2
1 = αλ1+λ2

1 .
By choosing different ATNs (and their associated t-conorms) together with the corresponding AGs

ϕ and ψ shown in Table 1 and Table 2, different operational rules for q-ROFNs can be generated.
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2.5 Hamy Mean

Definition 6 ([9]) Given any set A = {a1, a2, . . . , an} ⊂ R+ and a granularity parameter k ∈ N and
k ≤ n, the HM on A is defined as follows:

HMk(a1, a2, . . . , an) =
1

Ck
n

∑
1≤i1<...<ik≤n

(
k∏

j=1

aij

) 1
k (7)

where, i1, i2, . . . , ik ∈ N such that 1 ≤ i1 < . . . < ik ≤ n and Ck
n =

n!

k!(n− k)!
.

Two special cases of the HM operator corresponding to two different values of the parameter kare shown below.
1. For k = 1, then the HM will convert into the AM:

HM1(a1, a2, . . . , an) =
1

n

n∑
i=1

ai.

2. For k = n, then the HM will convert into the GM:

HMn(a1, a2, . . . , an) =

(
n∏

i=1

ai

) 1
n

.

3. Archimedean T-norm Based Hamy Mean for q-ROFNs

3.1 q-Rung Orthopair Fuzzy Archimedean Hamy Mean

Suppose {α1, α2, . . . , αn} is a collection of q-ROFNs. Then, the q-ROFAHM operator on a given setis a map from Qn to Q and is defined as follows:

q-ROFAHMk(α1, α2, . . . , αn) =
1

Ck
n

 ⊕
1≤i1<...<ik≤n

(
k⊗

j=1

αij

) 1
k

 (8)

where k ∈ Nn is a parameter of granularity and Ck
n =

n!

k! (n− k)!
.

Theorem 1 For a finite collection of q-ROFNs {α1, α2, . . . , αn}, the aggregated value by the q-
ROFAHM operator is a q-ROFN and is expressed as follows:

q-ROFAHMk(α1, α2, . . . , αn) =

(ψ−1

(
1

Ck
n

∑
1≤i1<...<ik≤n

ψ

(
ϕ−1

(
1

k

k∑
j=1

ϕ
(
µq
ij

))))) 1
q

,

(
ϕ−1

(
1

Ck
n

∑
1≤i1<...<ik≤n

ϕ

(
ψ−1

(
1

k

k∑
j=1

ψ
(
νqij

))))) 1
q

 (9)
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Proof. We have

αi1 ⊗ αi2 =
((
ϕ−1

(
ϕ
(
µq
i1

)
+ ϕ

(
µq
i2

))) 1
q ,
(
ψ−1

(
ψ
(
νqi1
)
+ ψ

(
νqi2
))) 1

q

)
and using mathematical induction, we get

k⊗
j=1

αij =

(ϕ−1

(
k∑

j=1

ϕ
(
µq
ij

))) 1
q

,

(
ψ−1

(
k∑

j=1

ψ
(
νqij

))) 1
q


Then, (

k⊗
j=1

αij

) 1
k

=

(ϕ−1

(
1

k

k∑
j=1

ϕ
(
µq
ij

))) 1
q

,

(
ψ−1

(
1

k

k∑
j=1

ψ
(
νqij

))) 1
q


Further,

⊕
1≤i1<...<ik≤n

(
k⊗

j=1

αij

) 1
k

=

(ψ−1

( ∑
1≤i1<...<ik≤n

ψ

(
ϕ−1

(
1

k

k∑
j=1

ϕ
(
µq
ij

))))) 1
q

,

(
ϕ−1

( ∑
1≤i1<...<ik≤n

ϕ

(
ψ−1

(
1

k

k∑
j=1

ψ
(
νqij

))))) 1
q


Finally,
q-ROFAHMk(α1, α2, . . . , αn) =

1

Ck
n

 ⊕
1≤i1<...<ik≤n

(
k⊗

j=1

αij

) 1
k



=

(ψ−1

(
1

Ck
n

∑
1≤i1<...<ik≤n

ψ

(
ϕ−1

(
1

k

k∑
j=1

ϕ
(
µq
ij

))))) 1
q

,

(
ϕ−1

(
1

Ck
n

∑
1≤i1<...<ik≤n

ϕ

(
ψ−1

(
1

k

k∑
j=1

ψ
(
νqij

))))) 1
q

 . (10)
Since ϕ and ψ are continuous strictly decreasing and increasing functions from [0, 1] to [0,∞],respectively, such that ψ(t) = ϕ(1− t) which implies ϕ−1(t) = 1− ψ−1(t). This shows that

0 ≤

(
ψ−1

(
1

Ck
n

∑
1≤i1<...<ik≤n

ψ

(
ϕ−1

(
1

k

k∑
j=1

ϕ
(
µq
ij

))))) 1
q

,

(
ϕ−1

(
1

Ck
n

∑
1≤i1<...<ik≤n

ϕ

(
ψ−1

(
1

k

k∑
j=1

ψ
(
νqij

))))) 1
q

≤ 1

and we know µq
ij
≤ 1− νqij ⇒ ϕ(µq

ij
) ≥ ϕ(1− νqij) = ψ(νqij)

⇒ ϕ−1

(
1

k

k∑
j=1

ϕ
(
µq
ij

))
≤ ϕ−1

(
1

k

k∑
j=1

ψ
(
νqij

))
= 1−ψ−1

(
1

k

k∑
j=1

ψ
(
νqij

))
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⇒ ψ

(
ϕ−1

(
1

k

k∑
j=1

ϕ
(
µq
ij

)))
≤ ψ

(
1− ψ−1

(
1

k

k∑
j=1

ψ
(
νqij

)))

= ϕ

(
1−

(
1− ψ−1

(
1

k

k∑
j=1

ψ
(
νqij

))))

⇒ ψ−1

(
1

Ck
n

∑
1≤i1<...<ik≤n

ψ

(
ϕ−1

(
1

k

k∑
j=1

ϕ
(
µq
ij

))))

≤ ψ−1

(
1

Ck
n

∑
1≤i1<...<ik≤n

ϕ

(
ψ−1

(
1

k

k∑
j=1

ψ
(
νqij

))))

= 1− ϕ−1

(
1

Ck
n

∑
1≤i1<...<ik≤n

ϕ

(
ψ−1

(
1

k

k∑
j=1

ψ
(
νqij

))))

⇒ 0 ≤

(
ψ−1

(
1

Ck
n

∑
1≤i1<...<ik≤n

ψ

(
ϕ−1

(
1

k

k∑
j=1

ϕ
(
µq
ij

))))) 1
q
·q

+

(
ϕ−1

(
1

Ck
n

∑
1≤i1<...<ik≤n

ϕ

(
ψ−1

(
1

k

k∑
j=1

ψ
(
νqij

))))) 1
q
·q

≤ 1

Hence, the inequality in the q-ROFS condition is satisfied. That is, the resultant value from the q-ROFAHM operator will always be a q-ROFN.
Further, properties such as monotonicity, idempotency, and boundedness are satisfied by the q-ROFAHM operator and are discussed hereafter.
1. Boundedness In a q-ROFNs set {α1, α2, . . . , αn}, suppose α− =

(
min

i
µi,max

i
νi

) and α+ =(
max

i
µi,min

i
νi

), i ∈ Nn. The resultant value of q-ROFAHM operator satisfy the following,
α− ≤ q-ROFAHMk(α1, α2, . . . , αn) ≤ α+.

2. Idempotency Given a set of q-ROFNs {α1, α2, . . . , αn} s.t. αi = α = (µ, ν), ∀ i ∈ Nn, theproposed AO holds the following,
q-ROFAHMk(α1, α2, . . . , αn) = α.

3. Monotonicity Suppose {α1, α2, . . . , αn} and {α′
1, α

′
2, . . . , α

′
n} are two different collections ofq-ROFNs with each αi ≤ α′

i i.e., µi ≤ µ′
i and νi ≥ ν ′i. Then the aggregated values will preserve thisorder i.e., q-ROFAHMk(α1, α2, . . . , αn) ≤ q-ROFAHMk(α′

1, α
′
2, . . . , α

′
n).
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3.2 q-Rung Orthopair Fuzzy Archimedean Weighted Hamy Mean

Suppose {α1, α2, . . . , αn} is a set of q-ROFNs with an associated weight vectorw = (w1, w2, . . . , wn) ∈
[0, 1]n s.t. ∑n

i=1wi = 1. Then the q-ROFAWHM operator on a given set with weighting vector w is amap from Qn to Q and is given by

q-ROFAWHMk(α1, α2, . . . , αn) =
1

Ck
n

 ⊕
1≤i1<...<ik≤n

(
k⊗

j=1

wijαij

) 1
k

 (11)

Theorem 2 For a finite collection of q-ROFNs {α1, α2, . . . , αn}, the aggregated value by the q-
ROFAWHM operator is a q-ROFN and the q-ROFAWHM operator is expressed as follows:q-ROFAWHMk(α1, α2, . . . , αn)

=

(ψ−1

(
1

Ck
n

∑
1≤i1<...<ik≤n

ψ

(
ϕ−1

(
1

k

k∑
j=1

ϕ
(
ψ−1

(
wijψ

(
µq
ij

))))))) 1
q

,

(
ϕ−1

(
1

Ck
n

∑
1≤i1<...<ik≤n

ϕ

(
ψ−1

(
1

k

k∑
j=1

ψ
(
ϕ−1

(
wijϕ

(
νqij

))))))) 1
q

 (12)

All three properties of the q-ROFAHM operator are also satisfied by the q-ROFAWHM operator.In the context of the conjunction and disjunction modelling of the aggregated q-ROFNs, Equation 12represents a general form of weighted HM operator. Thus any specific pair of AGs of continuous ATNand ATCN (Table 1 and Table 2) will give rise to a particular t-norm-based weighted HM operator asshown below.
1. Algebraic: For ϕ(t) = − log t and ψ(t) = − log(1 − t), the q-ROFAWHM operator will changeinto the q-ROF weighted HM operator.

q− ROFAWHMk
TA(α1, α2, . . . , αn)

=


1−

∏
1≤i1<...<ik≤n

(
1−

k∏
j=1

(
1−

(
1− µq

ij

)wij
) 1

k

) 1

Ck
n


1
q

,

( ∏
1≤i1<...<ik≤n

(
1−

k∏
j=1

(
1− (νqij)

wij

) 1
k

)) q

Ck
n

 (13)

2. Aczél-Alsina: For ϕ(t) = (− log t)γ and ψ(t) = (− log(1− t))γ , the q-ROFAWHM operator willreduce to the q-ROF Aczél-Alsina weighted HM operator.
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q− ROFAWHMk

TAA(α1, α2, . . . , αn)

=





1− e

−


1

Ck
n


∑

1≤i1<...<ik≤n

− log

1− e

−

1

k


k∑

j=1

(
− log

(
1− e

−
(
wij

(
− log(1−µq

ij
)
)γ) 1

γ

))γ


1
γ




γ



1
γ


1
q

,



e

−


1

Ck
n


∑

1≤i1<...<ik≤n

− log

1− e

−

1

k


k∑

j=1

(
− log

(
1− e

−
(
wij

(
− log νqij

)γ) 1
γ

))γ


1
γ




γ



1
γ


1
q


(14)

3. Dombi: For ϕ(t) =
(
1− t

t

)γ and ψ(t) =
(

t

1− t

)γ , the q-ROFAWHM operator will reduce to
the q-ROF Dombi weighted HM operator.
q− ROFAWHMk

TD(α1, α2, . . . , αn)

=


1−

1 +

 1

Ck
n

∑
1≤i1<...<ik≤n

1

k

k∑
j=1

(
wij

(
µq
ij

1− µq
ij

)γ)−1
−1

1
γ


−1
1
q

,


1 +

 1

Ck
n

∑
1≤i1<...<ik≤n

1

k

k∑
j=1

(
wij

(
1− νqij
νqij

)γ)−1
−1

1
γ


−1
1
q

 (15)

4. Frank: For ϕ(t) = log

(
γ − 1

γt − 1

)
and ψ(t) = log

(
γ − 1

γ1−t − 1

)
, The q-ROFAWHM operator will

be changed into the q-ROF Frank weighted HM operator.
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q− ROFAWHMTF (α1, α2, . . . , αn)

=


1− logγ

1 +

 ∏
1≤i1<...<ik≤n

γ
1 +

 k∏
j=1

γ
1 +

(
γ
1−µq

ij − 1
)wij

(γ − 1)wij
−1

−1

− 1




1
k


−1

− 1




1

Ck
n




1
q

,

logγ

1 +

 ∏
1≤i1<...<ik≤n

γ
1 +

 k∏
j=1

γ
1 +

(
γ
νqij − 1

)wij

(γ − 1)wij
−1

−1

− 1




1
k


−1

− 1




1

Ck
n




1
q


(16)

Furthermore, if we select the parameter k = n in the q-ROFAWHM operator, we will get the q-ROFAWG operator as follows [25]:

q− ROFAWHMk=n(α1, α2, . . . , αn) =

(ϕ−1

(
n∑

j=1

wjϕ(µ
q
j)

)) 1
q

,

(
ψ−1

(
n∑

j=1

wjψ(ν
q
j )

)) 1
q


(17)

=
n⊗

j=1

α
wj

j

= q− ROFAWG(α1, α2, . . . , αn)

On the other hand, on selecting the parameter k = 1 in the q-ROFAWHM operator, we will get thefollowing:

q− ROFAWHMk=1(α1, α2, . . . , αn) =

(ψ−1

(
1

n

n∑
j=1

wjψ(µ
q
j)

)) 1
q

,

(
ϕ−1

(
1

n

n∑
j=1

wjϕ(ν
q
j )

)) 1
q


(18)

=
1

n

n⊕
j=1

wjαj

It should be noted that the Equation 18 is 1/n times the q-ROF Archimedean weighted averaging(q-ROFAWA) operator that was developed in [25].
The q-ROFAWA operator defined in [25] is as follows:
q− ROFAWA(α1, α2, . . . , αn) =

n⊕
j=1

wjαj

=

(ψ−1

(
n∑

j=1

wjψ(µ
q
j)

)) 1
q

,

(
ϕ−1

(
n∑

j=1

wjϕ(ν
q
j )

)) 1
q

 (19)
Any specific pair of AGs of ATN and ATCN will provide that particular t-norm-based WA operator.To provide further insight into this framework, the resulting weighted AOs are discussed hereafter.
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1. Algebraic: For ϕ(tq) = − log tq andψ(tq) = − log(1− tq). The q-ROFAWA operator is convertedinto the q-ROF WA operator [14].

q− ROFAWATA(α1, α2, . . . , αn) =

(1− n∏
j=1

(
1− µq

αj

)wj

) 1
q

,
n∏

j=1

νwj
αj

 (20)

2. Aczél-Alsina: For ϕ(tq) = (− log tq)γ and ψ(tq) = (− log(1− tq))γ . The q-ROFAWA operator isreduced to the q-ROF Aczél-Alsina WA operator [26].
q− ROFAWATAA(α1, α2, . . . , αn)

=

((
1− e−(

∑n
j=1 wj(− log(1−µq

αj
))

γ
)

1
γ

) 1
q

,

(
e−(

∑n
j=1 wj(− log νqαj)

γ
)

1
γ

) 1
q

)
(21)

3. Dombi: For ϕ(tq) =
(
1− tq

tq

)γ and ψ(tq) =
(

tq

1− tq

)γ . The q-ROFAWA operator is converted
into the q-ROF Dombi WA operator [11].
q− ROFAWATD(α1, α2, . . . , αn)

=



1− 1

1 +

(
n∑

j=1

wj

(
uqαj

1− µq
αj

)γ
) 1

γ



1
q

,


1

1 +

(
n∑

j=1

wj

(
1− νqαj

νqαj

)γ
) 1

γ



1
q


(22)

4. Frank: For ϕ(tq) = log

(
γ − 1

γtq − 1

)
and ψ(tq) = log

(
γ − 1

γ1−tq − 1

)
. The q-ROFAWA operator is

reduced to the q-ROF Frank WA operator [24].
q− ROFAWATF (α1, α2, . . . , αn)

=

(1− logγ

(
1 +

n∏
j=1

(
γ1−µq

αj − 1
)wj

)) 1
q

,

(
logγ

(
1 +

n∏
j=1

(
γν

q
αj − 1

)wj

)) 1
q


(23)

5. Hamacher: For ϕ(tq) = log

(
γ + (1− γ)tq

tq

)
and ψ(tq) = log

(
γ + (1− γ)(1− tq)

1− tq

)
. The

q-ROFAWA operator is converted to the q-ROF Hamacher WA operator [6].
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q− ROFAWATH (α1, α2, . . . , αn)

=




n∏

j=1

(
1 + (γ − 1)µq

αj

)wj

−
n∏

j=1

(1− µq
αj
)wj

n∏
j=1

(
1 + (γ − 1)µq

αj

)wj

+ (γ − 1)
n∏

j=1

(1− µq
αj
)wj


1
q

,

γ
1
q

n∏
j=1

(ναj
)wj

(
n∏

j=1

(1 + (γ − 1)(1− νqαj
))wj + (γ − 1)

n∏
j=1

(νqαj
)wj

) 1
q


(24)

In the following section, we discuss a q-ROFAOPA method, as proposed in [21], for determiningthe weights of the decision attributes. In the subsequent sections, the q-ROFAOPA and q-ROFAWHM-operator-based MCGDM methodologies are proposed.
4. q-RungOrthopair FuzzyArchimedeanOrdinal Priorities Approach

This section provides a concise explanation of the step-by-step procedure underlying the q-ROFAOPAmethod. This methodology is used to find the criteria weights, and it has three steps, which are asfollows [21]:
Consider an MCGDM problem with n decision attributes and l DMs. Each expert expresses therelative importance of these n attributes through a linguistic assessment matrixLh =

[
ιh1j
]
1×n

, where
j ∈ Nn, h ∈ Nl. The term ιh1j denotes the relative significance assigned to the jth attribute given by
hth expert.

Step 1. Choose a suitable linguistic q-ROF scale for constructing a q-ROF matrixR = [ιjh]n×l of the
n-attributes and l-experts.

Step 2. To fuse the assessments provided by the DMs for each attribute, apply the q-ROFAWAoperator (see Equation 19). Next, for each aggregated value, compute the overall score (Sj) usingEquation 4. The attributes are then ordered according to their corresponding score values.
Step 3. The weights of the attributes are required to satisfy the ordering constraint w(t)

j ≥ w
(t+1)
j ,

where w(t)
j represents the importance of the attribute occupying the tth position in the ranking. Thisordering condition leads to the following requirement:

min
1≤j≤n

Sj

S
(t)
j

(
w

(t)
j − w

(t+1)
j

)
≥ 0 (25)

On the basis of condition (25), the attribute weights can be computed by formulating the linear pro-gramming model shown in (26).

Max Z

s. t.
min
1≤j≤n

Sj

S
(t)
j

(
w

(t)
j − w

(t+1)
j

)
≥ Z;

min
1≤j≤n

Sj

S
(n)
j

w
(n)
j ≥ Z;

n∑
j=1

wj = 1; wj ≥ 0 ∀ j.

(26)
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5. Multi-Criteria Group Decision-Making Approach
Suppose an MCGDM problem is defined over a q-ROFE, involving l DMs Dh, h ∈ Nl, n attributes

Cj , j ∈ Nn, andm alternativesAi, i ∈ Nm. Letwj ∈ [0, 1] denote the weight of criterionCj , satisfying∑n
j=1wj = 1 and let ωh ∈ [0, 1] represent the weight of an expertDh with∑l

h=1 ωh = 1. The evalua-
tion of ith alternatives corresponding to jth criterion by hth an expert is expressed as the ijth elementof the q-ROF decision matrixMh =

[
αh
ij

]
m×n

, whereαh
ij =

(
µh
ij, ν

h
ij

) is a q-ROFN. Consequently, there
exist l matrices M1 to M l. To identify the most suitable alternative, the proposed MCGDM model isapplied as follows:

Step 1. NormalizationIf an MCGDM problem involves both cost and benefit types of attributes. Then transformed thegiven decision matrices Mh =
[
αh
ij

]
m×n

into normalized decision matrices M̃h =
[
α̃h
ij

]
m×n

by usingthe procedure (27):
α̃h
ij =

(
µ̃h
ij, ν̃

h
ij

)
=

{
(µh

ij, ν
h
ij), for benefit type

(νhij, µ
h
ij), for cost type (27)

Step 2. Decision matrices’ aggregationTo fuse the normalized matrices M̃1 to M̃ l provided by experts, use the proposed q-ROFAWHMoperator and the given experts’ weights (ω1 to ωl). This aggregation yields a collective decision matrix
M̃ = [α̃ij]m×n.

α̃ij = q-ROFAWHM(α̃1
ij, α̃

2
ij, . . . , α̃

l
ij) (28)

Step 3. Evaluation of criteria weightsApply the q-ROFOPA method described in section 4 to find the importance degree for each deci-sion criterion. The obtained weights w1 to wn will be used to compute the overall assessment valuesin the next step.
Step 4. Overall assessment valuesUtilize the computed criteria weights (w1 to wn) to aggregate each row of the collective decisionmatrix (M̃ ) with the help of the q-ROFAWHM operator (12). Thus, for every alternative (A1 toAm), anoverall assessment value (α̃i) is obtained as follows:

α̃i = q-ROFAWHM(α̃i1, α̃i2, . . . , α̃in) (29)
Step 5. Score and rankingUsing Equation 4, compute the score for all overall assessment values, i.e., S(α̃i). Furthermore,use these computed values to assign a rank to each alternative.

5.1 Practical Implementation of the Developed MCGDM Method

Although mining operations are typically limited in duration, their impacts persist well beyondthe active extraction phase. Effective closure and rehabilitation, therefore, become essential, as in-adequate restoration can impose long-term burdens on society. Sustainable economic outcomes canbe supported by diversifying the use of mining revenues, particularly through investments in physical,social, and human capital. In this way, the exploitation of non-renewable resources can remain consis-tent with sustainability principles, since depleted assets are transformed into forms of capital that con-tinue to enhance societal well-being. Corporate social responsibility initiatives may involve allocating
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a portion of profits to community development, safeguarding employment, and improving workplaceconditions. Assistance to regions affected by mine closure can further facilitate transitions to sectorssuch as agriculture, helping integrate mining activities within a broader sustainability framework. Fol-lowing closure, a mining firm may consider several strategic options: rehabilitation (A1), rehabilitationwith business investment (A2), and rehabilitation with social transition subsidy (A3). Interviews withexperts explored these choices, focusing on their implications for sustainability and incorporating arange of critical viewpoints. Criteria for socially responsible rehabilitation include four main attributesand twelve sub-attributes taken from [7]. The complete decision hierarchy of attributes, alternativeassessments with respect to criteria, and significance of criteria evaluated by four DMs (D1, D2, D3,
D4) are taken from [7] and shown in Table 3, Table 4, and Table 5, respectively.

Table 3: List of criteria involved in the problem [7]
Main Criteria Sub-criteria Type(C1) Income of the residents in the region Benefit(G1) Economic aspect (C2) Employment in the region Benefit(C3) Socially responsible activities Cost(C4) Migration to other cities Cost(G2) Social aspect (C5) Social transition after the closure of a mine Benefit(C6) Social justice Benefit(C7) The reputation of the mining company Benefit(G3) Sustainability aspect (C8) Social acceptance Benefit(C9) Providing sustainable land use Benefit(C10) Biodiversity Benefit(G4) Environmental aspect (C11) GHG emissions Cost(C12) Contamination of soil Cost

Table 4: Linguistic decision matrices provided by four DMs [7]
DM Alternative Criteria (Cj)
Dh Ai C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

A1 L ML EH EH L L H M ML MH VL L
D1 A2 MH H MH ML M M EH MH H MH VL L

A3 ML L ML H EH MH EH H EH EH VL VL
A1 VL EL EH EH L EL EH M M VL EL EH

D2 A2 H EH ML EH M L EH M EH VL EL L
A3 M ML EL EH MH L EH MH EH VL EL VL
A1 VL EL EH EH EL ML H MH EH EH EL EL

D3 A2 EH MH VL VL EH MH EH H MH M ML M
A3 H MH ML VL MH EH EH EH EH EH EL VL
A1 VL L M H ML M H M EH EH L VL

D4 A2 EH H L VL MH H EH EH M MH M L
A3 EH EH EL EL EH EH EH EH H EH VL EL
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Table 5: Linguistic matrices of criteria significance provided by four DMs [7]

DM Criteria (G & C)
Dh G1 G2 G3 G4 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

D1 EH MH M H EL H MH EL M VH EH H H VL VH H
D2 EH ML M MH M VH H ML MH EH EH MH VH L VH MH
D3 VH M L L ML MH VL VL MH ML EH L M VH VH H
D4 EH ML M MH MH H ML ML VH ML EH VH ML M H VH

Table 6 is used to convert the linguistic information of the selected problem into q-ROFNs, whichis taken from [18]. Table 6: q-ROF linguistic scale [18]
Linguistic termsq-ROFN Extremely Very low Low Medium Medium Medium High Very high Extremely(µ & ν) low (EL) (VL) (L) low (ML) (M) high (MH) (H) (VH) high (EH)Membership (µ) 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95Non-membership (ν) 0.95 0.85 0.75 0.65 0.55 0.45 0.35 0.25 0.15

Step 1. NormalizationSince all the criteria except C3, C4, C11, and C12 are of benefit type, therefore employ the pro-cedure (27) on the given decision matrices and obtain the normalized decision matrices M̃1 to M̃4,shown in Table 7.
Table 7: Normalized decision matrices

DM Alternative Criteria (Cj)
Dh Ai C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

A1 (0.35, 0.75) (0.45, 0.65) (0.15, 0.95) (0.15, 0.95) (0.35, 0.75) (0.35, 0.75) (0.75, 0.35) (0.55, 0.55) (0.45, 0.65) (0.65, 0.45) (0.85, 0.25) (0.75, 0.35)

D1 A2 (0.65, 0.45) (0.75, 0.35) (0.45, 0.65) (0.65, 0.45) (0.55, 0.55) (0.55, 0.55) (0.95, 0.15) (0.65, 0.45) (0.75, 0.35) (0.65, 0.45) (0.85, 0.25) (0.75, 0.35)

A3 (0.45, 0.65) (0.35, 0.75) (0.65, 0.45) (0.35, 0.75) (0.95, 0.15) (0.65, 0.45) (0.95, 0.15) (0.75, 0.35) (0.95, 0.15) (0.95, 0.15) (0.85, 0.25) (0.85, 0.25)

A1 (0.25, 0.85) (0.15, 0.95) (0.15, 0.95) (0.15, 0.95) (0.35, 0.75) (0.15, 0.95) (0.95, 0.15) (0.55, 0.55) (0.55, 0.55) (0.25, 0.85) (0.95, 0.15) (0.15, 0.95)

D2 A2 (0.75, 0.35) (0.95, 0.15) (0.65, 0.45) (0.15, 0.95) (0.55, 0.55) (0.35, 0.75) (0.95, 0.15) (0.55, 0.55) (0.95, 0.15) (0.25, 0.85) (0.95, 0.15) (0.75, 0.35)

A3 (0.55, 0.55) (0.45, 0.65) (0.95, 0.15) (0.15, 0.95) (0.65, 0.45) (0.35, 0.75) (0.95, 0.15) (0.65, 0.45) (0.95, 0.15) (0.25, 0.85) (0.95, 0.15) (0.85, 0.25)

A1 (0.25, 0.85) (0.15, 0.95) (0.15, 0.95) (0.15, 0.95) (0.15, 0.95) (0.45, 0.65) (0.75, 0.35) (0.65, 0.45) (0.95, 0.15) (0.95, 0.15) (0.95, 0.15) (0.95, 0.15)

D3 A2 (0.95, 0.15) (0.65, 0.45) (0.85, 0.25) (0.85, 0.25) (0.95, 0.15) (0.65, 0.45) (0.95, 0.15) (0.75, 0.35) (0.65, 0.45) (0.55, 0.55) (0.65, 0.45) (0.55, 0.55)

A3 (0.75, 0.35) (0.65, 0.45) (0.65, 0.45) (0.85, 0.25) (0.65, 0.45) (0.95, 0.15) (0.95, 0.15) (0.95, 0.15) (0.95, 0.15) (0.95, 0.15) (0.95, 0.15) (0.85, 0.25)

A1 (0.25, 0.85) (0.35, 0.75) (0.55, 0.55) (0.35, 0.75) (0.45, 0.65) (0.55, 0.55) (0.75, 0.35) (0.55, 0.55) (0.95, 0.15) (0.95, 0.15) (0.75, 0.35) (0.85, 0.25)

D4 A2 (0.95, 0.15) (0.75, 0.35) (0.75, 0.35) (0.85, 0.25) (0.65, 0.45) (0.75, 0.35) (0.95, 0.15) (0.95, 0.15) (0.55, 0.55) (0.65, 0.45) (0.55, 0.55) (0.75, 0.35)

A3 (0.95, 0.15) (0.95, 0.15) (0.95, 0.15) (0.95, 0.15) (0.95, 0.15) (0.95, 0.15) (0.95, 0.15) (0.95, 0.15) (0.75, 0.35) (0.95, 0.15) (0.85, 0.25) (0.95, 0.15)

Step 2. Decision matrices’ aggregationTo aggregate the above four decision matrices shown in Table 7, equal weights of DMs (ωh = 0.25
∀ h) is used in the q-ROFAWHM operator with q = 2, k = 2, and algebraic t-norm (TA) and obtaineda collective decision matrix M̃ = [α̃ij]3×12, presented in Table 8.

Table 8: Aggregated decision matrix
Alternative Criteria (Cj)

Ai C1 C2 C3 C4 C5 C6

A1 (0.1391, 0.9538) (0.1357, 0.9619) (0.1180, 0.9729) (0.0980, 0.9788) (0.1640, 0.9443) (0.1906, 0.9315)
A2 (0.5290, 0.7174) (0.4691, 0.7519) (0.3841, 0.8070) (0.3622, 0.8417) (0.3949, 0.8052) (0.3123, 0.8534)
A3 (0.3986, 0.8052) (0.3459, 0.8423) (0.5098, 0.7327) (0.3445, 0.8639) (0.5098, 0.7327) (0.4627, 0.7754)Alternative C7 C8 C9 C10 C11 C12

A1 (0.4884, 0.7374) (0.3093, 0.8514) (0.4599, 0.7748) (0.4485, 0.7913) (0.5712, 0.6845) (0.4171, 0.8146)
A2 (0.6642, 0.6223) (0.4323, 0.7794) (0.4323, 0.7794) (0.2800, 0.8758) (0.4564, 0.7646) (0.3966, 0.7950)
A3 (0.6642, 0.6223) (0.5290, 0.7174) (0.6073, 0.6633) (0.5335, 0.7417) (0.5941, 0.6666) (0.5586, 0.6874)
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Likewise, the aggregated decision matrix can also be constructed to facilitate the final evaluationunder various parametric t-norms (TAA

γ , TD
γ , T F

γ , and TH
γ ) with parameter value γ = 2.

Step 3. Evaluation of criteria weightsImplement the q-ROFAOPA procedure as outlined in section 4.
Step 3.1. Apply the linguistic q-ROF scale provided in Table 6. The resulting q-ROF values are pre-sented in Table 9.
Step 3.2. Aggregate the criteria importance values using the q-ROFAWA operator. Since the consid-ered problem involves main and sub-criteria, to obtain the overall score values, first the score functionshown in Equation 4 is used to compute the local scores of the criteria. Then, the overall or global scorevalues (Sj) are obtained by multiplying the local score of each criterion by the local score of the cor-responding main criterion. Lastly, rank the criteria by their global scores. The resultant aggregatedvalues under TA, global score and ranks are shown in Table 9.

Table 9: Significance and rank of criteria
Criteria DMs (Dh) Aggregated Score(G & C) D1 D2 D3 D4 assessment Local Global Rank
G1 (0.95, 0.15) (0.95, 0.15) (0.85, 0.25) (0.95, 0.15) (0.9345, 0.1704) 0.9197
C1 (0.95, 0.15) (0.55, 0.55) (0.45, 0.65) (0.65, 0.45) (0.7611, 0.3941) 0.7055 0.6488 2
C2 (0.75, 0.35) (0.85, 0.25) (0.65, 0.45) (0.75, 0.35) (0.7626, 0.3426) 0.7247 0.6665 1
C3 (0.65, 0.45) (0.75, 0.35) (0.85, 0.25) (0.45, 0.65) (0.7167, 0.4000) 0.6690 0.6153 3
G2 (0.65, 0.45) (0.45, 0.65) (0.55, 0.55) (0.45, 0.65) (0.5372, 0.5687) 0.4734
C4 (0.95, 0.15) (0.45, 0.65) (0.85, 0.25) (0.45, 0.65) (0.7986, 0.3548) 0.7501 0.3551 10∼11
C5 (0.55, 0.55) (0.65, 0.45) (0.65, 0.45) (0.85, 0.25) (0.7042, 0.4085) 0.6564 0.3107 12
C6 (0.85, 0.25) (0.95, 0.15) (0.45, 0.65) (0.45, 0.65) (0.7986, 0.3548) 0.7501 0.3551 11∼10
G3 (0.55, 0.55) (0.55, 0.55) (0.75, 0.35) (0.55, 0.55) (0.6158, 0.4912) 0.5599
C7 (0.95, 0.15) (0.95, 0.15) (0.95, 0.15) (0.95, 0.15) (0.9500, 0.1500) 0.9381 0.5252 5
C8 (0.75, 0.35) (0.65, 0.45) (0.75, 0.35) (0.85, 0.25) (0.7626, 0.3426) 0.7247 0.4058 8
C9 (0.75, 0.35) (0.85, 0.25) (0.55, 0.55) (0.45, 0.65) (0.7002, 0.4206) 0.6486 0.3632 9
G4 (0.75, 0.35) (0.65, 0.45) (0.75, 0.35) (0.65, 0.45) (0.7052, 0.3969) 0.6616
C10 (0.85, 0.25) (0.75, 0.35) (0.85, 0.25) (0.55, 0.55) (0.7800, 0.3312) 0.7425 0.4912 6
C11 (0.85, 0.25) (0.85, 0.25) (0.85, 0.25) (0.75, 0.35) (0.8301, 0.2719) 0.8017 0.5304 4
C12 (0.75, 0.35) (0.65, 0.45) (0.75, 0.35) (0.85, 0.25) (0.7626, 0.3426) 0.7247 0.4795 7

Step 3.3. To determine the criteria weights, formulate the linear programming model. To do so,incorporate the global scores and ranking information from Table 9 into the conditions specified in(26). The resulting model, given the information, is presented in (30).

Max Z

s. t.
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w
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2 − w

(2)
1

)
≥ Z; 0.5916

(
w
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Solving the model (30) yields a maximum objective value of Z = 0.0095. The correspondingcriteria weights are shown in Table 10 (see row first).

Table 10: Criteria weights under several t-norms
Weights of criteria (wj)Triangular norm w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12Algebraic (TA) 0.1560 0.1765 0.1361 0.0314 0.0095 0.0204 0.1009 0.0550 0.0425 0.0848 0.1172 0.0697Aczél-Alsina (TAA

2 ) 0.1752 0.1542 0.1347 0.0441 0.0096 0.0326 0.1161 0.0564 0.0211 0.0850 0.1005 0.0705Dombi (TD
2 ) 0.1741 0.1521 0.1334 0.0456 0.0098 0.0337 0.1151 0.0578 0.0217 0.0854 0.0999 0.0713Frank (T F

2 ) 0.1561 0.1767 0.1363 0.0312 0.0095 0.0204 0.1010 0.0548 0.0423 0.0848 0.1174 0.0696Hamacher (TH
2 ) 0.1562 0.1769 0.1365 0.0310 0.0096 0.0203 0.1010 0.0546 0.0421 0.0847 0.1176 0.0695

In addition, Table 10 present the criteria weights obtained under several parametric t-norms (TAA
γ ,

TD
γ , T F

γ , and TH
γ ) with γ = 2.

Step 4. Overall assessment valuesUsing the collective decision matrix M̃3×12 presented in Table 8 and the criteria weights under
TA shown in Table 10, the q-ROFAWHM operator is applied to compute the final decision values(α̃1, α̃2, α̃3) for all alternatives (see Table 11).

Step 5. Score and rankingLastly, using the score function (Equation 4), the final score values (S(α̃i)) for all three alternativesand their ranks are presented in Table 11.
Table 11: Final results of the discussed MCGDM problem

T-norm Alternative Overall assessment Score Ranking order
A1 (0.0833, 0.9910) 0.0122Algebraic (TA) A2 (0.1258, 0.9817) 0.0255 A3 > A2 > A1

A3 (0.1460, 0.9785) 0.0314
A1 (0.2528, 0.9287) 0.0989Aczél-Alsina (TAA

2 ) A2 (0.3300, 0.8786) 0.1655 A3 > A2 > A1

A3 (0.3877, 0.8549) 0.2067
A1 (0.3520, 0.7620) 0.2644Dombi (TD

2 ) A2 (0.4032, 0.7054) 0.3243 A3 > A2 > A1

A3 (0.5519, 0.5623) 0.4852
A1 (0.0795, 0.9921) 0.0108Frank (T F

2 ) A2 (0.1192, 0.9846) 0.0220 A3 > A2 > A1

A3 (0.1365, 0.9821) 0.0266
A1 (0.0740, 0.9935) 0.0090Hamacher (TH

2 ) A2 (0.1096, 0.9878) 0.0179 A3 > A2 > A1

A3 (0.1239, 0.9859) 0.0213

Similarly, for various parametric t-norms (TAA
γ , TD

γ , T F
γ , and TH

γ ) based collective decision matrix
M̃ and corresponding criteria weights were also evaluated. The final assessment values, scores, andalternative rankings for these t-norms are presented in Table 11.
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As shown in Table 11, the findings are both consistent and clear. Across all continuous ATNs consid-ered, the developed methodology identifiesA3 as the most suitable alternative for a mining companyto support community rehabilitation.

6. Conclusions
In summary, this work has employed the flexible structure of ATNs and ATCNs within the q-ROFE.Two AOs, q-ROFAHM and q-ROFAWHM, are introduced. These advancements culminate in a newMCGDM framework that offers a comprehensive solution for complex decision-making situations. Theapplication of the proposed models to the selection of the best rehabilitation strategies for a closedmining site evaluated under various continuous ATNs indicates that the option incorporating a socialtransition subsidy (A3) is the most viable choice for the mining company. Consequently, this studystrengthens the practical utility of MCGDM in real-world settings.
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