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1. Introduction

The integration of fuzzy sets into multi-criteria group decision making (MCGDM) represents a sig-
nificant advancement, effectively addressing the inherent uncertainty often encountered in many
decision-making situations. Fuzzy set [34] establishes a mathematical framework for dealing with
imprecision and ambiguity, making it particularly well-suited for applications in decision science. An
extension of fuzzy sets, the intuitionistic fuzzy set (IFS) [2] emerged as a more effective means of
handling uncertainty. It encompasses membership and non-membership degrees along with the hes-
itation degree, offering decision makers (DMs) a more refined depiction of uncertainty. Building upon
these advancements, Pythagorean fuzzy set (PFS) [32] and then Fermentean fuzzy set (FFS) [27], offer
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a more comprehensive framework. This enhancement enables DMs to articulate their assessments
clearly, leading to a precise depiction of the contexts. In recent years, g-rung orthopair fuzzy set (qg-
ROFS) [33] has emerged as a versatile extension of the orthopair family of fuzzy sets. It introduces
a parameter g to regulate the degree of hesitancy, providing DMs with a flexible means of handling
vagueness in decision-making. This generalized framework enables DMs to capture and reflect the
involved vagueness in human perceptions and the linguistic representation used for attribute evalua-
tion.

Archimedean t-norms (ATNSs) (or Archimedean t-conorms (ATCNs)) provide a flexible mathematical
construction for modelling the and and or notions in the fuzzy set framework. ATNs are not neces-
sarily continuous; a continuous ATN is strictly increasing on the subset where its value is greater than
zero [4]. One key advantage of continuous ATNs and ATCNs is their representation via an additive
generator (AG), which simplifies computation by transforming a multivariate function into its univari-
ate generator [12]. Over time, researchers have used these ATNs and ATCNs to develop aggregation
operators (AOs) for decision-making methods [3, 29, 30]. AOs are essential for integrating various
sources of information and for representing preferences for attributes in decision-making. Specifi-
cally, weighted AOs have been instrumental in aggregating conflicting criteria and preferences within
fuzzy MCGDM contexts [3]. In this row, the WA operator for g-run orthopair fuzzy numbers (q-ROFNs)
has been extensively studied by various researchers under different t-norms that is Liu and Wang [14]
used algebraic t-norm, Jana et al. [11] applied Dombi t-norm, Darko and Liang [6] utilized Hamacher
t-norm, Seikh and Mandal [24] used Frank t-norm, and Senapati et al. [26] implemented Aczél-Alsina
t-norm, all these t-norms are continuous Archimedean. Similarly, various other AOs for g-ROFNs are
also studied under such continuous ATNSs [16]. On the other side, Liu and Wang [13] de-
fine some ATN-based arithmetic operations for g-ROFNs and utilize them to develop Bonferroni mean
(BM) and weighted BM operators. Such a construction provides a general architecture in an AO to
aggregate a finite number of g-ROFNSs. In this regard, Qin et al. [19] constructed the Archimedean
power partitioned Muirhead mean (MM) and weighted MM operators of g-ROFNs. In a similar man-
ner, Qin et al. [20] proposed the g-ROF Archimedean power partitioned weighted BM operator and
developed an MCDM approach based on the suggested AO. Further, to decrease the deviation caused
by the subjective perspective of the DM in the MCGDM problems, Shao et al. [28] introduced the con-
fidence g-ROF Archimedean weighted averaging (WA), weighted geometric (WG), ordered weighted
averaging (OWA), and ordered weighted geometric (OWG) operators. Ai et al. [1] suggested a new
representation of Archimedean arithmetic operations of g-ROFNs from the perspective of g-rung or-
thopair fuzzy (q-ROF) representation theorem, and the same representation is used in this chapter
for avoiding failure of ¢)(t) = ¢(1 — t) condition (see subsection 2.3). Recently, Seikh and Mandal
[25] utilized Ai et al.’s [1] framework of Archimedean arithmetic operations for developing the WA op-
erator under the g-rung orthopair fuzzy environment (q-ROFE). It is evident from the literature that
there is no construction of the Hamy mean (HM) operator within the general framework of ATN and
ATCN for any orthopair fuzzy information. The Hammy symmetric function, now known as HM, can
handle correlations among k-attributes via a parameter k. Hara et al. [10] discussed a refinement of
the arithmetic mean (AM) and geometric mean (GM) through an inequality and showed the existence
of HM between AM and GM. Therefore, HM is also considered a generalization of AM and GM, making
it an important player in the domain of AO. Thus, we developed the HM and its weighted variant for
d-ROFNs under ATN and ATCN setups.

A crucial aspect of weighted AOs is the assignment of weights to attributes, which significantly
impacts the decision-making process. Over time, researchers have explored various methods to de-
termine appropriate weights for different attributes based on their relative significance [5]. To evalu-
ate the significance of each attribute, various objective weight-finding techniques are helpful for DMs.
One such method is the ordinal priority approach (OPA), which utilizes a linear programming model
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to compute attributes’ weights. Deveci et al. [8] introduced the g-ROF-OPA, while Pamucar et al.
[15] proposed an OPA based on Schweizer-Sklar norms. Recently, Rawat and Komal [21] suggested a
g-ROF-OPA based on ATNs and ATCNSs, i.e., q-ROF Archimedean OPA (q-ROFAOPA). In this paper, we
developed an optimization model based on OPA under ATNs and ATCNs for g-ROFNs, incorporating the
proposed g-ROF Archimedean weighted Hamy mean (q-ROFAWHM) operator to introduce an MCGDM
method. Finally, we discussed its real-world application to the selection of rehabilitation strategies us-
ing the g-ROFAWHM operator and the g-ROF Archimedean OPA (g-ROFAOPA)-based MCGDM model.
The suggested technique addresses complex decision-making scenarios in which multiple DMs and
criteria jointly determine the final outcome. This MCGDM framework offers a structured approach
to facilitating group decision-making by incorporating the assessments and competence of several
DMs. Since DMs often face challenges in evaluating and ordering alternatives across multiple crite-
ria, the primary goal of the proposed MCGDM is to ensure a well-informed, comprehensive decision
that reflects the expert group’s varying perspectives and priorities. This approach not only integrates
individual preferences using the g-ROFAWHM aggregation operator but also addresses conflicts and
inherent uncertainties in the decision process [17, 23, 31]. Additionally, the methodology employs an
AO named g-ROFAWHM and an optimization technique named g-ROFAOPA to identify a satisfactory
criterion for importance.

The paper is structured as follows: In section 2, we discuss preliminary concepts, including g-
ROFS, ATN, ATCN, HM, and Archimedean operations of g-ROFNs. In section 3, we introduced the g-ROF
Archimedean HM (g-ROFAHM) and q-ROF Archimedean weighted HM (q-ROFAWHM) operators, along
with some specific cases of the g-ROFAWHM operator. In section 4, the objective weights evaluation
technique, i.e., g-ROFAQOPA, is discussed. In section 5, we proposed an MCGDM method based on the
g-ROFAOPA and g-ROFAWHM operators; additionally, its applicability is also illustrated by analyzing
a practical problem of strategy selection related to rehabilitation. Finally, section 6 discussed some
concluding remarks on the paper.

2. Preliminary

2.1 g-Rung Orthopair Fuzzy Set

Definition 1 ([33]) A g-ROFS A on a domain of discourse D is a collection of elements with their
orthopair membership grades (u4(x), va(x)), which is defined as

A= {(z, (pa(z),va(z))) | = € D} (1)

where p4(z) € [0,1] and v4(z) € [0, 1] indicates support for and support against membership of
in A and satisfies the ¢/ degree inequality p% (z) + v (x) < 1,¢ > 1.

The ma(z) = /1 — (ua(x))? — (va(z))? is the hesitancy of z in A. The (a,v4) € Q is called
d-ROFN, where O denotes the set of g-ROFNs.

Note 1: For ¢ = 1, 2, and 3, the g-ROFS is reduced to the IFS [2], PFS [32], and FFS [27], respectively,
and their geometric representation can be seen through Figure 1.

2.2 Score and Accuracy Functions

Definition 2 ([14]) Suppose a; = (jia,, Va, ) OF simply (1, ;) is a g-ROFN; the score function S for
d-ROFNs is a real-valued function that is defined as follows:

Slai) = pi —vf (2)
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Figure 1: Geometrical representation of g-rung orthopair fuzzy values

where S(«;) € [—1, 1] and higher the score value S(A) means bigger the g-ROFN.

Definition 3 ([14]) Suppose «; = (1, ;) is a -ROFN; the accuracy function H for g-ROFNs is a real-
valued function that is defined as follows:
H(o;) = p! + v (3)

where H(«;) € [0, 1] a greater accuracy value ensures a larger q-ROFN. Usually, the accuracy of g-
ROFNs is calculated only when their score values are the same. Further, using the score and accuracy
functions, an order can be defined for g-ROFNs.

Let a;; and «, be g-ROFNs. Then the order between these two values is defined as follows [14]:

1. If S(Oél) < S(Oég) = 01 < Q.
2. If S(ay) = S(ay), then compare their accuracy values

(@) f Hlay) < H(ag) = o < .
(b) If H(o) = H(we) = a1 = as.
Several studies report score functions that can directly rank g-ROFNs, thereby eliminating the need

for a separate accuracy function. Adding to this discourse, Rawat et al. [22] have introduced a new
score function, articulated as follows:
1

Se(a;) = 3 ((,uf —vl4+1)— %cos ((1 —7d) g)) (4)

where 7; is a hesitancy associated with a g-ROFN.

2.3 Archimedean T-norm and T-conorm

Definition 4 ([4]) A t-norm T is said to be an ATN if for every (z,y) € (0,1)> 3ak € Nsit.

k—times k—times
T(x,...,2) <y. Thatis, forany a € (0,1) klim Ty(a,...,a) = 0and, only 0 and 1 are the idempo-
— 00
tent elements of 7.
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ATNs need not be continuous. Moreover, the existence of a limit alone is not sufficient to ensure
the continuity of a t-norm.

A continuous ATN 7" can be defined by its strictly decreasing AG ¢ : [0,1] — [0, 00] s.t. ¢(1) = 0,
as follows:

T(x,y) = ¢~ (d(x) + d(y)) (5)
Definition 5 ([4]) A t-norm S is said to be an ATCN if for every (z,y) € (0,1)> 3a k € N with
k—times
S(z,...,2)>y

A continuous ATCN S can be defined by its strictly increasing AG ¢ : [0, 1] — [0, oo] with ¢)(0) = 0,
as follows:

S(x,y) =~ () + (y)) (6)

For an AG ¢ : [0, 1] — [0, co] of a t-norm. The AG of t-conorm S, ¢ : [0, 1] — [0, 00}, is given by
b(t) = o1 —1).

In fuzzy set theory, t-norms serve as the intersection operation, and t-conorms as the union oper-
ation. Various t-norms and t-conorms, such as Aczél-Alsina, Dombi, Frank, and Hamacher, are used to
define basic operations for g-ROFNs. Table 1 present some continuous g-ROF ATNs given in [1] from the
perspectives of q-ROF representation theorem. That are, algebraic (), Aczél-Alsina (TAA)WE(O’OO),
Dombi (T7) e (0,00), Frank (1) .,(0,0)» and Hamacher (T*).,¢[y o) t-norms with their continuous and
strictly decreasing AGs [12].

Table 1: Archimedean t-norms for g-ROFNs

Name Triangular norm (7') Additive generator (¢)
Algebraic TA2y) =z -y ¢ (t?) = —logt?
T
¥ ua)Y 1 a . ~
Aczél-Alsina T;‘é‘(‘o’m) (29, y1) = <67((flog:nq) +(—logy?) )7) @:?é’(ovm)(tq) = (—logt9)”
v
. D - 1 D . 1—t7\"
Dombi Twe(ﬂyoo) (2% y") = a\ T A\ N (z)”/e(o*w)(t )= ta
1 — 29 1—ye 5
1+ +
x4 yq
-y, =1 oo 1.
(( 94yt —1)7,0 e
o max ( (7 +y? — q,), v = o0; ‘ . 1— ¢, = 00:
Frank Tcioa (@ y") = (D — DY e L N
. 7 D0 - ! log [ —— | , else.
1og,<1+—)> ,else. g<ﬂtq_ )7
< " -1 ) !
0, y=u=v=_0; _t7 v =0;
q q = A q tq
Hamacher Til i ooy (@0 y1) = 21 2 , P00y () = v (1=t
,else. log else
v+ (1 =) (a9 4+ y? — zay?) ta

- . . ) A gAA D F
Similarly, Table 2 contains some continuous g-ROF ATCNs (5S4, S E(0,00)" Oye(0,00) Oe(0,00 AN

Sfe[o oo)) with continuous and strictly increasing AGs from the perspectives of the q-ROF representa-
tion theorem [1].
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Table 2: Archimedean t-conorms for g-ROFNs

Name Triangular cornorm (S) Additive generator (1))
Algebraic SA (29, y9) = (2 4 y? — quq)i PA(19) = —log(1 — 17)
T
5 AR /
Aczél-Alsina 5280000 (@ y7) = (1 — e ((~log(1=2)7+(~ log(1-y"))") ) P00 (1) = (= log(1 —17))"
T
. ) 1 ) tq Y
Dombi S 0o @hy) = [ 1 — — T U000y () = P
24 e y ¢
1 ot !
((5) (25))

(@7 +y? - T"?/q) =1L —log(1—17), v=

min ( (x4 y?)a ) = 00; ) 4. /= 00:
Frank Sfe(“’m](a“,q?yq) - 1—a4 A | u}”{:‘e(()voc](tq) - ’ Y *? .

<1 —log,, (1 + O™ ( 1 - >>> ,else. log <,)/1—t'7 — 1’) , else.

=
T
1, y=0andu=v=1; 1f v =0;
H 29 y9) = q q 4,/ a0\ & WH 7y — te’
Hamacher S,},E[OYOO)CI,]., y!) = 294y — 29T — (1 —y)aty?\ @ dlse Lﬁ/n/g[(),og)(t’) = oe (2 +(1—7)(1—t9) .
1= (1 — )z , else. g\ ———— | clse
V)TY 1t

2.4 Archimedean T-norm and T-conorm Based Operations

Let oy and ap be two g-ROFNs, and let ¢ and v are strictly decreasing and increasing AG of 1" and
S, respectively, and A > 0 [1].

1 ®as = (7 W) + ) (0760 + 68,) )
2. a1 @ ay = (67 (@) + (97 . (v (W) +w<u2>>>%)
3. Aar = (@ QD) (67 e())? );

4. = (67 OGN, (7 Q)7 ).

The results obtained by the above-mentioned rules are g-ROFNs. Moreover, the first two opera-
tions can be generalized to a finite collection of g-ROFNSs.

bl () ()
2 ®a - (w (Z ¢(u§’)>> : (w—l (Z ww)))

Let a1, and iy are two g-ROFNs and let \{, Ay > 0, then some fundamental properties hold by
these operations are as follows [13]:

Q=

Q|
Q|

IS

(i) a1 @ s = g @ ag; (iv) Oéi\l ® 0431 =(y® 042)’\1;
(i) o1 @ g = s @ ay; (V) Mar @ dooy = (A + Aoy
(”l) )\1(0{1 &P 052) = )\1@1 P A1a2; (Vl) ai\l ® ai\z — ai\1+)\2.

By choosing different ATNs (and their associated t-conorms) together with the corresponding AGs
¢ and vy shown in Table 1 and Table 2, different operational rules for g-ROFNs can be generated.
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2.5 Hamy Mean

Definition 6 ([9]) Given any set A = {ay, as,...,a,} C R* and a granularity parameter k£ € N and
k < n, the HM on A is defined as follows:

k %
HMk(al,GQ,...,an)_é Z (Ha]) (7)

n 1§7)1<...<ik§n j:1

n!
where, iy,4y,...,iy € Nsuchthat1 <i; < ... <ip, <nandCF = ————.
kl(n —k)!

Two special cases of the HM operator corresponding to two different values of the parameter &
are shown below.

1. For k = 1, then the HM will convert into the AM:

1
HM(ay, as,. .., a,) = —Z a;.

2. For k = n, then the HM will convert into the GM:
1
HM™(ay, as,...,a,) = (H al-) .
=1

3. Archimedean T-norm Based Hamy Mean for g-ROFNs

3.1 g-Rung Orthopair Fuzzy Archimedean Hamy Mean

Suppose {1, as, ..., a,} is a collection of g-ROFNs. Then, the g-ROFAHM operator on a given set
is amap from Q" to Q and is defined as follows:

1
k &
1
q-ROFAHMF (avy, o, . . ., @) = o b <® o%.) (8)

1<ii<..<ip<n \j=1

n!
k' (n— k)

Theorem 1 For a finite collection of g-ROFNs {4, aa, ..., a,}, the aggregated value by the g-
ROFAHM operator is a g-ROFN and is expressed as follows:

q-ROFAHMk(Oq,OéQ, o ,Oén) _ (wl (é Z w <¢1 (%Z¢ (ng)>)>> a )

" 1<ip<...<ip<n
(@ Z el (Eew))) ¢
Cﬁ 1<i1 <...<ix<n k j=1 E
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Proof. We have
@ = (67 (0(u) + 0 ()7 (07 (8 0) + 0 (1))

and using mathematical induction, we get

G- ([ (Bet) (- ()
(@) - ((-(xe))

L@ (@) (((x ()
Lz ()

q-ROFAHME (a1, s, . . ., (1) = ik ( @ (é O@) k)

Then,

Q=
/‘\
N
Y
| =
1M~
<=
N
X
SR
N——
N~
N~

|
N~ —

Further,

1< <..<ip<n

(. z ()
(&S o Gsem))

Since ¢ and ¢ are continuous strictly decreasing and increasing functions from [0, 1] to [0, o],
respectively, such that ¢(t) = ¢(1 — t) which implies ¢~1(¢) = 1 — ¢~ *(¢). This shows that

ol s (20)

1
(&
N 1<ii<...<ig<n

and we know if <1—vi = ¢(u ) > ¢(1 —vf) =9y(v])

. (éieﬁ (u?,-)) <ot (%Jiw (w)) R
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:/w((%,f > w(W(%ZMug)))

1<i1<..<ip<n

|
oo, o (0]

n < <. .<ip<n

=1-¢" (i > ¢ (W (1 k (”q>>>>
Cfli 1<i1<...<ip<n b j=1 ’
<iy < J

(o3, ()
e 2 ()=

Hence, the inequality in the g-ROFS condition is satisfied. That is, the resultant value from the g-
ROFAHM operator will always be a g-ROFN.

Further, properties such as monotonicity, idempotency, and boundedness are satisfied by the g-
ROFAHM operator and are discussed hereafter.

1. Boundedness In a g-ROFNs set {«v, s, ..., v, }, suppose o~ = (min f;, MAX 1/,-) and o™ =

(max [4i, Min Vz‘) , 1 € N,,. The resultant value of g-ROFAHM operator satisfy the following,

o~ < q-ROFAHM*(ay, g, . .., o) < .

2. Idempotency Given a set of g-ROFNs {«y, s, ..., a,} st. oy = a = (p,v), Vi € N, the
proposed AO holds the following,

q-ROFAHM"(ay, g, . . ., o) = .

3. Monotonicity Suppose {aq, s, ..., o, } and {o], s, ..., } are two different collections of
g-ROFNs with each «; < o i.e., u; < pl and v; > vl. Then the aggregated values will preserve this
orderi.e.,

a-ROFAHMF (a1, g, . . ., i) < G-ROFAHM* (), oy, . .., ).

n
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3.2 g-Rung Orthopair Fuzzy Archimedean Weighted Hamy Mean

Suppose {a, g, . . ., a, }is a set of g-ROFNs with an associated weight vector w = (wq, wo, ..., w,) €
[0,1]"s.t. >, w; = 1. Then the g-ROFAWHM operator on a given set with weighting vector w is a
map from Q" to Q and is given by

==

k

1
a-ROFAWHM (a1, 0z, ) = o | €D <® wijozi,.) (11)

N\ 1<ij<..<ip<n \j=1

Theorem 2 For a finite collection of qg-ROFNs {«, as, ..., a,}, the aggregated value by the g-
ROFAWHM operator is a q-ROFN and the g-ROFAWHM operator is expressed as follows:
q-ROFAWHMF (o, g, . . ., i)

(@ S (e o))

" 1<in<...<ip<n

(& = oo (i o)) ] o

n1<in<..<ip<n

All three properties of the g-ROFAHM operator are also satisfied by the g-ROFAWHM operator.
In the context of the conjunction and disjunction modelling of the aggregated g-ROFNs, Equation 12
represents a general form of weighted HM operator. Thus any specific pair of AGs of continuous ATN
and ATCN (Table 1 and Table 2) will give rise to a particular t-norm-based weighted HM operator as
shown below.

1. Algebraic: For ¢(t) = —logt and ¢(t) = —log(1 — t), the g-ROFAWHM operator will change
into the g-ROF weighted HM operator.

q — ROFAWHME ., (ay, s, . .., ay)
(- 11 (1_H(1_(1_ng>%)i>cﬁ |
1< <..<ip<n
( H (1—H(1—(ng)wij)’l“))dg (13)

2. Aczél-Alsina: For ¢(t) = (—logt)” and ¢(t) = (—log(1 —t))”, the -ROFAWHM operator will
reduce to the q-ROF Aczél-Alsina weighted HM operator.
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q — ROFAWHME .4 (a1, s, . .., a)

1 7 (; (Ek: <_ o <1 (- 1°g<1u3j))”)%) ) 7)) &
“| ok Z —log|1—¢ ~

nl1<ii<...<ig<n

Sy

1 N
k 5 % 2 ]
1 ‘(;1 (Z <— log (1 — ef(wij(’log”@ ) )) ))
| & Z —log|1-e =t
o 1<in<...<ig<n
€
(14)
—t\’ t o\’
3. Dombi: For ¢(t) = T) and ¢(t) = (l—t) , the g-ROFAWHM operator will reduce to

the g-ROF Dombi weighted HM operator.

q — ROFAWHME (o, as, . . ., )

Q=

-1

1 1< AN

n 1< <. <ip<n j=1

2=

-1

k 1 — q 7\ 1
1+ é > %Z(%( qu”>> (15)

N 1<ip<..<ip<n j

=
Q=

2

-1 -1
7t and ¢(t) = log s , The g-ROFAWHM operator will
V-1 it =1
be changed into the g-ROF Frank weighted HM operator.

4. Frank: For ¢(t) = log
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q — ROFAWHM r(ay, ag, ..., o)

Q=

/7~
2
T
=
SR
|
—
~——
S
<
SN——
|
—
\
—
[
\
—

k
=||1-log, |1+ 11 v+ ] 7(”(7_1)%—1

1<ii<..<ip<n Jj=1

1
1 ck

1<i1<...<ip<n j=1

/
2
SR
|
—
——
§
<
SN——
|
—
il
|
—

k Vi
logﬂ{ 1+ H vyl 1+ H 7(1—"_(’}/—1)%11

(16)

Furthermore, if we select the parameter £ = n in the g-ROFAWHM operator, we will get the g-
ROFAWG operator as follows [25]:

q — ROFAWHM*="(ay, ag, ..., ) = <¢_1 (i wjgb(u?))) q , (1/)_1 (i wjlb(ug))) q
j=1 J=1
(17)
- ® a;.”j
j=1

e q — ROFAWG(OCl, Qg, . .. 7an)

On the other hand, on selecting the parameter k& = 1 in the g-ROFAWHM operator, we will get the
following:

q — ROFAWHM*="(avy, g, . . ., ) = (w‘l (% > wﬂ(u?)) ) : (cb‘l (% > qus(u;f)))
j=1 Jj=1

(18)

1
q

n

D

n 3%
J=1

It should be noted that the Equation 18 is 1/n times the g-ROF Archimedean weighted averaging
(g-ROFAWA) operator that was developed in [25].

The g-ROFAWA operator defined in [25] is as follows:

q — ROFAWA (ay, ag, ..., a,) = @wjaj
j=1

= <¢1 (i wﬂ(ﬂ?))) q : (cbl (i wﬂ(ﬂ}’))) ‘1 (19)

Any specific pair of AGs of ATN and ATCN will provide that particular t-norm-based WA operator.
To provide further insight into this framework, the resulting weighted AOs are discussed hereafter.
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1. Algebraic: For ¢(t7) = — logt?and ¥ (t9) = — log(1 —t?). The g-ROFAWA operator is converted
into the g-ROF WA operator [14].

q — ROFAWA ;4 (a1, g, ..., ) = (1 — ﬁ (1 _ ng>wj> a ’ﬁyg’]? (20)
j=1

J=1

2. Aczél-Alsina: For ¢(t7) = (—logt?)” and ¢ (t?) = (—log(1 — t9))”. The q-ROFAWA operator is
reduced to the g-ROF Aczél-Alsina WA operator [26].

q— ROFAWATAA (Oél, Qg, ... 7Oén)

_ ((1 - e—<2?-1wj<—log<1—u%j>>”>%) R (e‘@?‘l“’j(_bgygj)vﬁ) ) (21)

q

1 —ta

3. Dombi: For ¢(t7) = (1 ;tq)w and ¥(t?) = (

into the g-ROF Dombi WA operator [11].

”
) . The g-ROFAWA operator is converted

q— ROFAWATD (al, Ao, ... ,Oén)

Q=

1 1
—= 1 — 1 9 1
+<Zw](1_;q) ) 1+<ij< q J) )
j=1 A j=1 &

(22)
v—1 v—1 .
4. Frank: For ¢(t7) = log | —; ] and ¢(t?) = log w1 ) The g-ROFAWA operator is

7 g -

reduced to the g-ROF Frank WA operator [24].

q — ROFAWA ;r (a1, ag, ..., ay)
= (1—log7< ﬁ( l-pld; ) j))q7 (log’y( ﬁ(,yva] _1> ]>>q

5. Hamacher: For ¢(t?) = log (W) and ¥ (t?7) = log (7+( 1_7151 _tq)). The

g-ROFAWA operator is converted to the g-ROF Hamacher WA operator [6].

(23)
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q — ROFAWA ;s (ay, ag, . .., ay)

n

J=1 J=1 J=1

1+«,f1u)"’+<~/—1>H<1fuzj>“ﬁ (H (1= )+ (- ) ) )

j=1 j=1

(24)

In the following section, we discuss a q-ROFAOPA method, as proposed in [21], for determining
the weights of the decision attributes. In the subsequent sections, the g-ROFAOPA and g-ROFAWHM-
operator-based MCGDM methodologies are proposed.

4. g-RungOrthopair Fuzzy Archimedean Ordinal Priorities Approach

This section provides a concise explanation of the step-by-step procedure underlying the g-ROFAOPA
method. This methodology is used to find the criteria weights, and it has three steps, which are as
follows [21]:

Consider an MCGDM problem with n decision attributes and [ DMs. Each expert expresses the
relative importance of these n attributes through a linguistic assessment matrix L = [L’fj} Lxm? where
7 €N, h € N.. The term Lffj denotes the relative significance assigned to the j attribute given by
ht" expert.

Step 1. Choose a suitable linguistic q-ROF scale for constructing a g-ROF matrix R = [Ljh]nxl of the
n-attributes and [-experts.

Step 2. To fuse the assessments provided by the DMs for each attribute, apply the g-ROFAWA
operator (see Equation 19). Next, for each aggregated value, compute the overall score (S;) using
Equation 4. The attributes are then ordered according to their corresponding score values.

Step 3. The weights of the attributes are required to satisfy the ordering constraint w](.t) > w§t+1),

where w( ) represents the importance of the attribute occupying the #** position in the ranking. This
ordering condition leads to the following requirement:

2, %
= (W ) 20 (25)
J

On the basis of condition (25), the attribute weights can be computed by formulating the linear pro-
gramming model shown in (26).

(Max Z
S. t.
2.5 55, %
o () =) > 2 E—u > 2, (26)
Sj Sj
\ j=1
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5. Multi-Criteria Group Decision-Making Approach

Suppose an MCGDM problem is defined over a g-ROFE, involving [ DMs D,,, h € N;, n attributes
C;,7 € N,,,and m alternatives A;, i € N,,,. Let w; € [0, 1] denote the weight of criterion C}, satisfying
Y- w; = Landletwy, € [0, 1] represent the weight of an expert Dj, with S wn = 1. The evalua-
tion of i'" alternatives corresponding to j'” criterion by h'" an expert is expressed as the i element
of the q-ROF decision matrix M" = [am s Where ali = (uly, vlk) is a g-ROFN. Consequently, there
exist [ matrices M to M'. To identify the most suitable alternative, the proposed MCGDM model is
applied as follows:

Step 1. Normalization
If an MCGDM problem involves both cost and benefit types of attributes. Then transformed the

given decision matrices M" = [a?j]mm into normalized decision matrices M" = [&?j]mm by using
the procedure (27):
hoh :
L o), for benefit type
aly = (il ) = 4 i @)
(vj5, 1), for cost type

Step 2. Decision matrices’ aggregaﬁon )

To fuse the normalized matrices M! to M' provided by experts, use the proposed g-ROFAWHM
operator and the given experts’ weights (w1 towy). This aggregation yields a collective decision matrix
M = [d]

mxn®

&;; = Q-ROFAWHM(a;, a7, . .., ak)) (28)

139 g0 1
Step 3. Evaluation of criteria weights
Apply the g-ROFOPA method described in section 4 to find the importance degree for each deci-

sion criterion. The obtained weights w; to w,, will be used to compute the overall assessment values
in the next step.

Step 4. Overall assessment values
Utilizg the computed criteria weights (w; to w,,) to aggregate each row of the collective decision

matrix (/) with the help of the g-ROFAWHM operator (12). Thus, for every alternative (A; to A,,), an
overall assessment value (&;) is obtained as follows:

C~l{i = q-ROFAWHM(dzl, dz‘gy e dm) (29)

Step 5. Score and ranking
Using Equation 4, compute the score for all overall assessment values, i.e., S(&;). Furthermore,
use these computed values to assign a rank to each alternative.

5.1 Practical Implementation of the Developed MCGDM Method

Although mining operations are typically limited in duration, their impacts persist well beyond
the active extraction phase. Effective closure and rehabilitation, therefore, become essential, as in-
adequate restoration can impose long-term burdens on society. Sustainable economic outcomes can
be supported by diversifying the use of mining revenues, particularly through investments in physical,
social, and human capital. In this way, the exploitation of non-renewable resources can remain consis-
tent with sustainability principles, since depleted assets are transformed into forms of capital that con-
tinue to enhance societal well-being. Corporate social responsibility initiatives may involve allocating
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a portion of profits to community development, safeguarding employment, and improving workplace
conditions. Assistance to regions affected by mine closure can further facilitate transitions to sectors
such as agriculture, helping integrate mining activities within a broader sustainability framework. Fol-
lowing closure, a mining firm may consider several strategic options: rehabilitation (A;), rehabilitation
with business investment (As), and rehabilitation with social transition subsidy (As). Interviews with
experts explored these choices, focusing on their implications for sustainability and incorporating a
range of critical viewpoints. Criteria for socially responsible rehabilitation include four main attributes
and twelve sub-attributes taken from [7]. The complete decision hierarchy of attributes, alternative
assessments with respect to criteria, and significance of criteria evaluated by four DMs (D, D, Ds,
D,) are taken from [7] and shown in Table 3, Table 4, and Table 5, respectively.

Table 3: List of criteria involved in the problem [7]

Main Criteria Sub-criteria Type
(C) Income of the residents in the region Benefit
(G1) Economic aspect (C5) Employment in the region Benefit
(C3) Socially responsible activities Cost
(C'4) Migration to other cities Cost
(G») Social aspect (C5) Social transition after the closure of a mine  Benefit
(C¢) Social justice Benefit
(C7) The reputation of the mining company Benefit
(Gs) Sustainability aspect  (C'g) Social acceptance Benefit
(Cy) Providing sustainable land use Benefit
(C0) Biodiversity Benefit
(G4) Environmental aspect  (C;;) GHG emissions Cost
(C'5) Contamination of soil Cost

Table 4: Linguistic decision matrices provided by four DMs [7]

DM Alternative Criteria (C})

Dy, Aj C, Cy Cy3 Cy Cy Cg Cp Cg Cy Cp Cip Ch
Ay L ML EH EH L L H M ML MH VL L

D, A, MH H MH ML M M EH MH H MH VL L
As ML L ML H EH MH EH H EH EH VL VL
A VL EL EH EH L EL EH M M VL EL EH

D, A, H EH ™ML EH M L EH ™M EH VL EL L
As M ML EL EH MH L EH MH EH VL EL VL
A VL EL EH EH EL ™ML H M™MH EH EH EL EL

Ds Ay EH MH VL VL EH M™MH EH H MH M ML M
As H MH ML VL MH EH EH EH EH EH EL VL
A VL L M H ML M H M EH EH L VL

Dy A, EH H L VL MH H EH EH M MH M L
As EH EH EL EL EH EH EH EH H EH VL EL
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Table 5: Linguistic matrices of criteria significance provided by four DMs [7]

DM Criteria (G & C)

D h gl g2 g3 g4 Cl C'2 C’3 C14 C'5 C’6 C? C18 C'9 CIO Cll C’12
D; EH MH M H EL H MH EL M VH EH H H VL VH H
D, EH ML M MH ™M VH H ML MH EH EH M™MH VH L VH MH
Ds VH ™M L L ML MH VL VL MH ML EH L M VH VH H
Dy, EH ML M MH MH H ML ML VH ML EH VH ML M H VH

Table 6 is used to convert the linguistic information of the selected problem into g-ROFNs, which
is taken from [18].
Table 6: g-ROF linguistic scale [18]

Linguistic terms

g-ROFN Extremely Verylow Low Medium Medium Medium High Veryhigh Extremely

(u&v) low (EL) (VL) (L) low (ML) (M) high (MH)  (H) (VH) high (EH)
Membership () 0.15 0.25 0.35 0.45 0.55 0.65 075 0.85 0.95
Non-membership () 0.95 0.85 0.75 0.65 0.55 0.45 0.35 0.25 0.15

Step 1. Normalization

Since all the criteria except (5, Cy, C11, and (5 are of benefit type, therefore employ the pro-
cedure (27) on the given decision matrices and obtain the normalized decision matrices M?* to M?*,
shown in Table 7.

Table 7: Normalized decision matrices

DM Alternative Criteria (C})

Dy, A; C) Cy Cy Cy Cs Cs Cr Cy Cy Cho Cn Chy
Ay (0.35,0.75) (0.45,0.65) (0.15,0.95) (0.15,0.95) (0.35,0.75) (0.35,0.75) (0.75,0.35) (0.55,0.55) (0.45,0.65) (0.65,0.45) (0.85,0.25) (0.75,0.35)

Dy Ay (0.65,0.45)  (0.75,0.35) (0.45,0.65) (0.65,0.45) (0.55,0.55) (0.55,0.55) (0.95,0.15) (0.65,0.45) (0.75,0.35) (0.65,0.45) (0.85,0.25) ((] 75,0.35)
As (0.45,0.65) (0.35,0.75) (0.65,0.45) (0.35,0.75) (0.95,0.15) (0.65,0.45) (0.95,0.15) (0.75,0.35) (0.95,0.15) (0.95,0.15) (0.85,0.25) (0.85,0.25)
Ay (0.25,0.85) (0.15,0.95) (0.15,0.95) (0.15,0.95) (0.35,0.75) (0.15,0.95) (0.95,0.15) (0.55,0.55) (0.55,0.55) (0.25,0.85) (0. ‘)5 0.15) (U 15,0.95)

D, Ay (0.75,0.35)  (0.95,0.15) (0.65,0.45) (0.15,0.95) (0.55,0.55) (0.35,0.75) (0.95,0.15) (0.55,0.55) (0.95,0.15) (0.25,0.85) (0.95,0.15) (0. 75 (J 35)
As (0.55,0.55) (0.45,0.65) (0.95,0.15) (0.15,0.95) (0.65,0.45) (0.35,0.75) (0.95,0.15) (0.65,0.45) (0.95,0.15) (0.25,0.85) (0.95,0.15) (0.85,0.25)
Ay (0.25,0.85) (0.15,0.95) (0.15,0.95) (0.15,0.95) (0.15,0.95) (0.45,0.65) (0.75,0.35) (0.65,0.45) (0.95,0.15) (0.95,0.15) (0.95,0.15) (U 9J 0.15)

Ds Ay (0.95,0.15) (0.65,0.45) (0.85,0.25) (0.85,0.25) (0.95,0.15) (0.65,0.45) (0.95,0.15) (0.75,0.35) (0.65,0.45) (0.55,0.55) (0.65,0.45) (0.55,0.55)
As (0.75,0.35)  (0.65,0.45) (0.65,0.45) (0.85,0.25) (0.65,0.45) (0.95,0.15) (0.95,0.15) (0.95,0.15) (0.95,0.15) (0.95,0.15) (0.95,0.15) (0.85,0.25)
Ay (0.25,0.85) (0.35,0.75) (0.55,0.55) (0.35,0.75) (0.45,0.65) (0.55,0.55) (0.75,0.35) (0.55,0.55) (0.95,0.15) (0.95,0.15) (0.75,0.35) (0.85,0.25)

D, Ay (0.95,0.15)  (0.75,0.35) (0.75,0.35) (0.85,0.25) (0.65,0.45) (0.75,0.35) (0.95,0.15) (0.95,0.15) (0.55,0.55) (0.65,0.45) (0.55,0. oo) (0.75,0.35)
As (0.95,0.15)  (0.95,0.15) (0.95,0.15) (0.95,0.15) (0.95,0.15) (0.95,0.15) (0.95,0.15) (0.95,0.15) (0.75,0.35) (0.95,0.15) (0.85,0.25) (0.95,0.15)

Step 2. Decision matrices’ aggregation

To aggregate the above four decision matrices shown in Table 7, equal weights of DMs (w;, = 0.25
V h) is used in the g-ROFAWHM operator with ¢ = 2, k = 2, and algebraic t-norm (7'4) and obtained
a collective decision matrix M = [@ij] 4,100 Presented in Table 8.

Table 8: Aggregated decision matrix

Alternative Criteria (C})
A; Cy Cy Cy Cy Cs Cs
Ay (0.1391,0.9538)  (0.1357,0.9619) (0.1180,0.9729) (0.0980,0.9788) (0.1640,0.9443) (0.1906,0.9315)
Ay (0.5290,0.7174)  (0.4691,0.7519) (0.3841,0.8070) (0.3622,0.8417) (0.3949,0.8052) (0.3123,0.8534)
As (0.3986,0.8052) (0.3459,0.8423) (0.5098,0.7327) (0.3445,0.8639) (0.5098,0.7327) (0.4627,0.7754)
Alternative 07 Cg Cg CIO 011 Clg
A (0.4884,0.7374)  (0.3093,0.8514) (0.4599,0.7748) (0.4485,0.7913) (0.5712,0.6845) (0.4171,0.8146)
A, (0.6642,0.6223) (0.4323,0.7794) (0.4323,0.7794) (0.2800,0.8758) (0.4564,0.7646) (0.3966,0.7950)
As (0.6642,0.6223)  (0.5290,0.7174) (0.6073,0.6633) (0.5335,0.7417) (0.5941,0.6666) (0.5586,0.6874)
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Likewise, the aggregated decision matrix can also be constructed to facilitate the final evaluation
under various parametric t-norms (Tj““, Tf, Tf, and Tf) with parameter value v = 2.

Step 3. Evaluation of criteria weights
Implement the g-ROFAOPA procedure as outlined in section 4.

Step 3.1. Apply the linguistic g-ROF scale provided in Table 6. The resulting g-ROF values are pre-
sented in Table 9.

Step 3.2. Aggregate the criteria importance values using the g-ROFAWA operator. Since the consid-
ered problem involves main and sub-criteria, to obtain the overall score values, first the score function
shown in Equation 4 is used to compute the local scores of the criteria. Then, the overall or global score
values (S;) are obtained by multiplying the local score of each criterion by the local score of the cor-
responding main criterion. Lastly, rank the criteria by their global scores. The resultant aggregated
values under T4, global score and ranks are shown in Table 9.

Table 9: Significance and rank of criteria

Criteria DMs (Dy,) Aggregated Score

(G&C) D, Dy Ds Dy assessment Local  Global Rank
G.  (0.95,0.15) (0.95,0.15) (0.85,0.25) (0.95,0.15) (0.9345,0.1704) 0.9197
Cy (0.95,0.15) (0.55,0.55) (0.45,0.65) (0.65,0.45) (07611,0.3941) 07055 0.6488 2
Cy (0.75,0.35) (0.85,0.25) (0.65,0.45) (0.75,0.35) (07626,0.3426) 07247 0.6665 1
Cs (0.65,0.45) (0.75,0.35) (0.85,0.25) (0.45,0.65) (0.7167,0.4000) 0.6690 0.6153 3
Gs (0.65,0.45) (0.45,0.65) (0.55,0.55) (0.45,0.65) (0.5372,0.5687) 0.4734
Cy (0.95,0.15) (0.45,0.65) (0.85,0.25) (0.45,0.65) (0.7986,0.3548) 0©0.7501 0.3551 10~
Cs (0.55,0.55) (0.65,0.45) (0.65,0.45) (0.85,0.25) (0.7042,0.4085) 0.6564 0.3107 12
Cs (0.85,0.25) (0.95,0.15) (0.45,0.65) (0.45,0.65) (07986,0.3548) 07501 0.3551 11~10
Gs (0.55,0.55) (0.55,0.55) (0.75,0.35) (0.55,0.55) (0.6158,0.4912) ©0.5599
Cy (0.95,0.15) (0.95,0.15) (0.95,0.15) (0.95,0.15) (0.9500,0.1500) 0.9381 0.5252 5
Cs (0.75,0.35) (0.65,0.45) (0.75,0.35) (0.85,0.25) (07626,0.3426) 07247 0.4058 8
Cy (0.75,0.35) (0.85,0.25) (0.55,0.55) (0.45,0.65) (0.7002,0.4206) 0.6486 0.3632 9
G, (0.75,0.35) (0.65,0.45) (0.75,0.35) (0.65,0.45) (07052,0.3969) 0.6616
Cho (0.85,0.25) (0.75,0.35) (0.85,0.25) (0.55,0.55) (0.7800,0.3312) 07425 0.4912 6
Ch (0.85,0.25) (0.85,0.25) (0.85,0.25) (0.75,0.35) (0.8301,0.2719) 0.8017 0.5304 4
Cig (0.75,0.35) (0.65,0.45) (0.75,0.35) (0.85,0.25) (07626,0.3426) 07247 0©0.4795 7

Step 3.3. To determine the criteria weights, formulate the linear programming model. To do so,
incorporate the global scores and ranking information from Table 9 into the conditions specified in
(26). The resulting model, given the information, is presented in (30).

(Max Z

S. t.
0.4662 (w — w!?) > Z; 05916 (w® — wl¥) > Z;0.8555 wﬁf—w$”>;zz;
0.4789 (w!® — w) > Z; 0.6325 (0¥ — WD) > 7:0.8750 (w{” — W) > Z;
: (30
0.5050 (w$? — w'?) > 7; 0.6480 () — w®) > 7:0.8750 (W™ — W) > Z; )
0.5858 (w'? — w®) > 7: 0.7656 (w® — W) > Z; 1.0 > 7;
12
ij =1;w; >0Vj.

\ j=1
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Solving the model (30) yields a maximum objective value of Z = 0.0095. The corresponding
criteria weights are shown in Table 10 (see row first).

Table 10: Criteria weights under several t-norms

Weights of criteria (w;)

Triangular norm w1 (0P} w3 Wy Ws We wr wg Wy () w11 w12

Algebraic (TA) 0.1560 0.1765 0.1361 0.0314 0.0095 0.0204 0.1009 0.0550 0.0425 0.0848 0.1172 0.0697
Aczél-Alsina (TZAL‘) 0.1752 0.1542 0.1347 0.0441 0.0096 0.0326 0.1161 0.0564 0.0211 0.0850 0.1005 0.0705
Dombi (TQD) 0.17741 0.1521 0.1334 0.0456 0.0098 0.0337 0.1151 0.0578 0.0217 0.0854 0.0999 0.0713
Frank (TQF) 0.1561 0.1767 0.363 0.0312 0.0095 0.0204 0.1010 0.0548 0.0423 0.0848 0.11774 0.0696
Hamacher (TQH) 0.1562 0.17769 0.1365 0.0310 0.0096 0.0203 0.1010 0.0546 0.0421 0.0847 0.11776 0.0695

In addition, Table 10 present the criteria weights obtained under several parametric t-norms (T,;“A,
Tf, Tf, and Tf) withy = 2.

Step 4. Overall assessment values

Using the collective decision matrix ]\7[3X12 presented in Table 8 and the criteria weights under
T4 shown in Table 10, the q-ROFAWHM operator is applied to compute the final decision values
(1, ag, @v3) for all alternatives (see Table 11).

Step 5. Score and ranking
Lastly, using the score function (Equation 4), the final score values (S(&;)) for all three alternatives
and their ranks are presented in Table 11.

Table 11: Final results of the discussed MCGDM problem

T-norm Alternative Overall assessment Score  Ranking order
Ay (0.0833,0.9910)  0.0122

Algebraic (T4) A, (0.1258,0.9817)  0.0255 Az > Ay > Ay
As (0.1460,0.9785)  0.0314
Aq (0.2528,0.9287)  0.0989

Aczél-Alsina (T*4) A, (0.3300,0.8786)  0.1655 Az > Ay > Ay
As (0.3877,0.8549)  0.2067
Ay (0.3520,0.7620)  0.2644

Dombi (T'P) A, (0.4032,0.7054)  0.3243 A3 > Ay > Ay
As (0.5519,0.5623)  0.4852
Ay (0.0795,0.9921)  0.0108

Frank (TY") A, (0.1192,0.9846)  0.0220 Az > Ay > Ay
As (0.1365,0.9821)  0.0266
A (0.0740,0.9935)  0.0090

Hamacher (T3) A, (0.1096,0.9878)  0.0179 Az > Ay > Ay
As (0.1239,0.9859)  0.0213

Similarly, for various parametric t-norms (T;“A, TP, Tf, and Tf) based collective decision matrix

M and corresponding criteria weights were also evaluated. The final assessment values, scores, and
alternative rankings for these t-norms are presented in Table 11.
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As shown in Table 11, the findings are both consistent and clear. Across all continuous ATNs consid-
ered, the developed methodology identifies A5 as the most suitable alternative for a mining company
to support community rehabilitation.

6. Conclusions

In summary, this work has employed the flexible structure of ATNs and ATCNs within the g-ROFE.
Two AOs, g-ROFAHM and g-ROFAWHM, are introduced. These advancements culminate in a new
MCGDM framework that offers a comprehensive solution for complex decision-making situations. The
application of the proposed models to the selection of the best rehabilitation strategies for a closed
mining site evaluated under various continuous ATNs indicates that the option incorporating a social
transition subsidy (As) is the most viable choice for the mining company. Consequently, this study
strengthens the practical utility of MCGDM in real-world settings.
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